RSA

LABORATORIES

PKCS #11 v2.20: Cryptographic Token Interface Standard

RSA Laboratories
28 June 2004

Table of Contents
1 INTRODUCTION 1
2 SCOPE 2
3 REFERENCES 3
4 DEFINITIONS 7
5 SYMBOLS AND ABBREVIATIONS 10
6 GENERAL OVERVIEW 12
6.1 INTRODUCTION. ......uutiiiiiiiieeeiiieeesteeeeetteeeestrteeeseseeeesssseaeassseseasssseeasssseesassssesasssseesssssasesssseesnnsns 12
6.2 DESIGN GOALS ....ceeeieeeeeeee et e et e et e e e ettt e e e e et e e e eeaaeeeeeaeeeeeeseeeeeeneeeeeneeeeenseeeeeanns 13
6.3 GENERAL MODEL ....cviiiiiuiiieeetiee et e eette e e ettt e e ettt e e e eaeeeeaateeeeeaaeeeeeaasseeetseeeeesseeseensseeeensseeeannes 13
6.4 LOGICAL VIEW OF A TOKEN ......ccceiiiiiiiiiieeetrieeeiteeeestreeeetseseessssesessseseassesesssssesasossesassssesesnnns 15
6.5 TUSERS ..ot eittee ettt e ettt e e ettt e e ettt e e e atb e e e s atbeeeestbaaeessaeeeasssaeeessseaeassseeeanssaaeessseaeaansbeeeanssaaeessaaaann 16
6.6 APPLICATIONS AND THEIR USE OF CRYPTOKI ....ccceeiiuririieeeeeiiiieeeeeeeeeeeeineeeeeeesseessnnseeeeesssssnnnes 17
0.6.1  ApPLICATIONS ANA PTOCESSES .....c.eeeiieieeeiie ettt sttt aeesebeessseenevees 17
6.6.2  Applications And tAFEAAS ..................cccccvevuieiiieiiieieiiece et 18
6.7 SESSTONS .....uttteeeitteeestteeeeiteeeetaeeeeebteeesstseeassesaaeaseseaeassseeeasssaeeasssaeeassseeanssseeeassseeeassseessssseanns 19
0.7.1  Read-ONlY SESSION SIALES ..........cceeeeiaeeeieeteee ettt ettt 19
6.7.2  ReQA/WFILE SESSION STATES ... 20
6.7.3  Permitted object AcCeSSES DY SESSIOMNS ..........c.cccvevveiieiiiiiiieeeeeieeeie et 21
6.7.4 SOSSTION @VOILS ..o e e 22
6.7.5  Session handles and object RANAIes....................cccocoeiioiiiiiiiiiiiiiiee e 23
0.7.6  CaPADIlItIeS Of SESSIOMS ........cceeueiuieieeeee ettt ettt e e 23
6.7.7  EXAMPLE Of USE Of SESSIONS.......ccvveceieiiiiieiiieiieeieeie ettt enaen 24
6.8 SECONDARY AUTHENTICATION (DEPRECATED)........cecuieieeeiesieeeeeeeesesnesseenseeseenseensesssesseensens 26
6.9 FUNCTION OVERVIEW.....cciiiiiieiitiiieeeeieeeieeeeeeeeeeeeaateeteesseesanessseessssssnsassseessesssssssseesessssssnnssseees 27
7 SECURITY CONSIDERATIONS 30
8 PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR CH+....vevvnenee 31
8.1 STRUCTURE PACKING ....cccuvviieeitieeeeiteeeeeitteeeeeueeeeeetteeeeeseeseeiaseeeeesseseeessseeeaassseeessseseeessseeeasseneens 31
8.2 POINTER-RELATED MACROS ......ccoiuttiiiitieeeeirieeesreeeesuseeestseseassssesesssesesssseseassssesassssesassssesesnnns 32
B CK PTR oo 32
¢ CK _DEFINE FUNCTION........cccootiiiiiiieee ettt ettt 32
¢ CK _DECLARE _FUNCTION .....ooooiiieiieeeee ettt 32
¢ CK DECLARE FUNCTION POINTER ......oo.oooeoooeeoeeeeeeeeeeeeeoeeeeeeeeeeeeeeeeeeeeee e esrene 32

Copyright [0 1994-2004 RSA Security Inc. License to copy this document is granted provided that it is
identified as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning
or referencing this document.



11 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK _CALLBACK _FUNCTION ....cccoiiiiiiiieeeeee ettt 33

¢ INULL PTR.....ocoeeeeeee ettt ettt b et ee et nt e e eae e nes 33
8.3 SAMPLE PLATFORM- AND COMPILER-DEPENDENT CODE........cccceiiuiiieeiieeeesreeeesireeeeereeeenveeaens 33
8.3.1 WIS 2o e e 33
8.3.2  WRIG.....cooooceiieeeeeeeeeee e 34
8.3.3 GENETIC UNIX ...t 35

9 GENERAL DATA TYPES 36
9.1 GENERAL INFORMATION ....cccutiiiieiiiiieeitieeeetreeeesseeeesuseeestseseassssesasssessasseseassssesesossessssssesesnnns 36
¢ CK _VERSION; CK_VERSION PTR .......ccooiiiiiieiee et 36

¢ CK _INFO; CK INFO PTR .....coooooeeeeeeeeieeee ettt 37

¢ CK _NOTIFICATION ..ottt ettt eve e 38
9.2 SLOT AND TOKEN TYPES .....ooiiiiitiiieiiiieeeetieeeeitteeeeetteeeeeaeeeeeaeaeeeetseeeeetseeseeaseseeensseseeessseeeaseneens 38
¢ CK _SLOT ID; CK _SLOT ID PTR.......ccoieeeiieieeie ettt 38

¢ CK _SLOT INFO; CK _SLOT INFO PTR......ocooiiiiiiiiieieeeeee ettt 39

¢ CK _TOKEN INFO; CK_TOKEN INFO PTR......cccooooiiiiaiieieiieii e 40
9.3 SESSION TYPES ....cveieiitteeeeeteeeeeeteeeeeeteeeeeetee e e et e e e et e e eeeaeeeeeeaeeeeeesseeeeeseeeeenseeeeeeseeeeeesseeeeeseeeens 46
¢ CK _SESSION HANDLE; CK_SESSION HANDLE PTR ...........ccccoovvveimiiiiaiiiiiaieeeennnn, 46

¢ CK _USER _TYPE ..ottt b e ea bttt ettt 46

¢ CK _STATE ...ttt ettt ettt et e b e e et et sraebe e s enns 47

¢ CK _SESSION _INFO; CK _SESSION INFO PTR.......cccocvioiaiiiaieeiiee e 47
9.4 OBJIECT TYPES ..ttt ettt ettt e eeette e e ettt e e e et e e e et e e e eeaae e e e eaeeeeetteeeeeaaeeeeeassseeentteeeenssseseasseneeenseeaeannes 48
¢ CK _OBJECT HANDLE,; CK_OBJECT HANDLE PTR.........cccccovviiiiiiaiieieeeeeen, 48

¢ CK OBJECT CLASS; CK_OBJECT CLASS PTR ..ot 48

¢ CK _HW FEATURE TYPE.......cooooioieiieoe ettt 49

¢ CK KEY TYPE ...ttt ettt eae s 49

¢ CK _CERTIFICATE TYPE......ccooiioiieeee ettt 50

¢ CK ATTRIBUTE _TYPE.......oooieeeeee oottt 50

¢ CK ATTRIBUTE; CK_ATTRIBUTE PTR......cciooiiieeieei e 51

¢ CK UDATE.......oooeeeeeeee ettt ettt ettt e ettt e e eet st e enaeeee e 51
9.5 DATA TYPES FOR MECHANISMS .....uviievieireeeteeeteeereeeoseeeseseseesseseseessessseesssessseessessseesnnes 52
¢ CK MECHANISM _TYPE; CK MECHANISM TYPE PTR ......ccoccoovviiiiiiiieieeeeeeee 52

¢ CK _MECHANISM; CK_ MECHANISM PTR........cooveoveiiieieeieeieee et 52

¢ CK _MECHANISM _INFO; CK MECHANISM INFO _PTR .......ccccooviiiiiiiiiiieeeeee 53
9.6 FUNCTION TYPES ...ttt ettt e et e e e et e e e e tte e e eeaae e e eeaaaeeeentaeeeeesseeeeeaseneeensseeeannes 54
¢ K RV ettt ettt ettt a ettt et eaeenreeae s 55

¢ CK NOTIFY ..ottt ettt ettt ettt n e ee et e e eae e 55

¢ (O G O, ¢, €. T OSSP USSP URSPR 55

¢ CK FUNCTION _LIST; CK_ FUNCTION LIST PTR; CK FUNCTION LIST PTR PTR... 56
9.7 LOCKING-RELATED TYPES ......uttiiiiiiieiitieeeetteeeesteeeestteeestseeeesssseeessseasassseseassssesesssesassssesesnnns 58
¢ CK CREATEMUTEX ..ottt ettt 58

¢ CK _DESTROYMUTEX .......oovvivieieeeieecie ettt ettt 58

¢ CK LOCKMUTEX and CK_UNLOCKMUTEX .......c.cccccooiiiiaiiieieeeeeee e 58

¢ CK _C INITIALIZE ARGS; CK_C INITIALIZE ARGS PTR.......ccovvvvceiiiiiiaieeannnn, 60

10 OBJECTS 62
10.1 CREATING, MODIFYING, AND COPYING OBJECTS ...uvvvviieeeeeiiireeeeeeeeeiiitrreeeeeeeeeeinrreeeeeeeessnnsseeeens 63
10.1.1 CrOALING ODJECLS ...ttt ettt ettt 63
10.1.2 MOGIVING ODJECES.........ceeeeeeeeee ettt 65
10.1.3 COPYING ODJECLS ...ttt eneene e 65
10.2 COMMON ATTRIBUTES......0eteittieeeiiteeestteeeetreeeessseessosseeesssessassssessssssesssssssssassssessssssesssssseessnsns 66
10.3 HARDWARE FEATURE OBJIECTS.....uveiiiitieeeeetiee e et eeeee e et eeaee e e e e e eeaeeeeeeneeeeenneeeenseeeeeenns 67
10.3.1 DCFITITIONS ......c.eeee ettt ettt e 67

Copyright © 2004 RSA Security Inc. June 2004



il

10.3.2 OVEFVICW ...ttt ettt ettt sttt ettt 67
10.3.3 CLOCK ..ottt ettt ettt ettt 67
10.3.4 Monotonic COURLEr OBJECLS............c.occeiuiiieiiei et 68
10.3.5 USEr INEETfACE ODBJECES .....c..oeiieeeeeeee e 69
10.4 STORAGE OBIECTS ..c.iutiiiiiieiieiieiestesie sttt ettt sttt et e et sa e e e sae s nnenens 71
10.5 DATA OBIECTS ..ottt s st 72
10.5.1 DfIRITIONS. ...ttt 72
10.5.2 OV VICW ...ttt ettt et ettt et et ee et et et eeneenneen 72
10.6 CERTIFICATE OBJECTS ..ttt ettt sttt st sttt s 73
10.6.1 DCIIIITIONS ...ttt 73
10.6.2 OVEFVECW ...t ettt ettt et e et e te et enaeeneeeee e st e neeneeeneeeneenneen 73
10.6.3 X.509 public key certificate OBJECES ..ot 74
10.6.4 WTLS public key certificate 0BJECtS .............c..coooiveviiiiiiiiiieiiece et 76
10.6.5 X509 attribute CertifiCate ODJECES.............ccouiiriiiiiiiiiieiiieeeeeeee et 78
10.7 KEY OBJIECTS ..ttt sttt ettt sttt ettt et b b sae ettt et et bt sae bt eaeessennennen 79
10.7.1 DCSITITIONS ......c.eeee ettt ettt ettt neas 79
10.7.2 OV VICW ...ttt ettt ettt ettt et 79
10.8 PUBLIC KEY OBJECTS....c.ctiuiiiiiiiiiiiitieiietete ettt st st s 81
10.9 PRIVATE KEY OBJIECTS ...cuteutitinientinteeiteitentententestestesueesteseensensessenbesueeueemeessensensensesaessesmeensensennen 82
10.10  SECRET KEY OBJECTS ...cuteuteuieientinientieteeiteitetestestesteeteestensesetensesaeesesseensessesaensesteenesusessensensenne 84
10.11  DOMAIN PARAMETER OBJECTS ..c..oviiuiiiiiiieiieieniiie sttt ettt st ese st s e st s ne 87
10.11.1 DCSIIITIONS ...ttt 87
10.11.2 OVEFVICW ...ttt et ettt ettt e e e e et et et e naeemeeeee e st eae e et eneeeneenaeen 87
10.12 MECHANISM OBJECTS......ceutiuteientinieniieteeitetetesteste st eteesteusessetenseseeebesueensessesaenaesteesesueenseneensenne 88
10.12.1 DISIRILIONS. ..ottt ettt ettt ere bt eae e 88
10.12.2 OVEFVICW ...ttt e e e et e e et e e e et e e e e atseeeetsaeessasaeeenssseeaanes 88

11 FUNCTIONS 89
11.1 FUNCTION RETURN VALUES.....ccutiiiiiiiiiieie ittt ettt et e s et e e eneenesnesaeesaeesaeeneenneeas 90
11.1.1 Universal Cryptoki function return VAIUES .................c.cccceoeieiceioiiiiiiieieeeeeeee e 90
11.1.2 Cryptoki function return values for functions that use a session handle........................ 91
11.1.3 Cryptoki function return values for functions that use a token...................c.cccccoccocene.. 92
11.1.4 Special return value for application-supplied callbacks ..................cccccoveveecievcincnnnnnnn. 92
11.1.5 Special return values for mutex-handling functions ................c.ccccoceoeeevenenccsenenn. 93
11.1.6 All other Cryptoki function return ValUes ................c.ccoeceeveeeieeeeeceieiesienseeseeieeseennens 93
11.1.7 More on relative priorities Of Cryptoki errors.............cocvvvciiciiiiioieiicnineniniie e 100
11.1.8 Error code “QOICHAS ™ ..........c.ocoiiiieiieiee s 101
11.2 CONVENTIONS FOR FUNCTIONS RETURNING OUTPUT IN A VARIABLE-LENGTH BUFFER ........... 101
11.3 DISCLAIMER CONCERNING SAMPLE CODE........ccuiiuiiiiiiiiiieieieniietieieeieeneeeie st saesne s 102
11.4 GENERAL-PURPOSE FUNCTIONS......ccutiuiiiiiiiiiitiitiinc ittt st st 102
¢’ O (77777 1 -1 PP 102

4 C FINALIZE ...t 104

¢ C GOHIIO ...ttt ettt ettt ne s 105

4 C GOFUNCHIONLISE ...ttt 106
11.5 SLOT AND TOKEN MANAGEMENT FUNCTIONS ......eotinutruinireneeiententenieneeeerensensensessesseeneessensensenne 106
¢ C GOSIOLLISE ...ttt ettt ettt be et eesbeesaeenaeeseeseennes 106

¢’ C GOSIOHIAIO ...ttt ettt ettt ettt nae e 108

¢ C _GOTOKCHINIO ...ttt ettt 109

¢’ C _WAILFOFSIOEVERL ...ttt ettt ettt eeae s 110

¢ C _GEtMECRANISILISE ...ttt ettt be e enaeenees 111

¢’ C _GetMeCHANTSIINLO. .........cc.ee ittt 112

¢ C INEETOKCN ...ttt ettt ettt be e enaeenees 113

¢ C IRIEPIN ... ettt ettt st ettt e b e b bt atent et aeeae s 115

¢’ C USEIPIN ...ttt ettt 116

June 2004 Copyright © 2004 RSA Security Inc.



v

H
=
ok U YR YR YR YR SR GR URUR GR G G UR GR NI UR GR G G-I U GR G UR GR URUR GR GRS IR GR GRUR UR SR SR W

\S}

[
—_—

[ —_—
—_— —_—

—
—
(=

[
—_—
—_—

—_—
—_—

—_
—_
* ¢ — % $ * % e

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

SESSION MANAGEMENT FUNCTIONS ....c.coiuiiiiiiiiiitiniiniieiieeeie st encease et s sne e nesae e 117
G OPCRSESSION.......c..eeeeee ettt et ea ettt et ae et ae et eneas 117
C ClOSESESSION ...ttt ettt et ettt et e s et eesaesreeseenees 118
C _CIOSCAIISESSIOMS ...ttt ettt ettt 120
C _GOLSESSIONINIO ...ttt et ebeebe e enees 120
C _GetOPEFALIONSIALE ..ottt ettt ettt ettt ae s 121
C _SEtOPCIFALIONSIALE ...ttt ettt ettt tee et e e aee e taeebeeetaeenneeens 123
O Mo 1 TSRS 125
C LOZGOUL ... ettt et e e e sttt e et e s et e et e s eb e e e e et e e e abeentbeeenbeeea 127
OBJECT MANAGEMENT FUNCTIONS .....coiuiiiiiiiiiiiiiiiiiieiieieiesee sttt 128
C CFeIEODJEC. ..ottt ettt 128
C COPYOBJECE ...ttt ettt 130
C DESITOYODJOCE ...ttt ettt ettt 131
C GEIOBJECISIZE ...ttt 132
C _GetAUFTDULEVAIUE. ... 133
C SEtAUFIDULEVALUC ...ttt 135
C _FindODJECISINIL ..ottt ettt 136
C FINAODJECLS ...ttt ettt 137
C _FindODbJecCtSFiNGL............c.cocooiiiiiiiiieeeeeee e 138
ENCRYPTION FUNCTIONS......coitiiiiiiitiiiieiieietenie sttt sttt sae st be s et sae st b e ene et nnenens 139
O ) T g 717 £ USSP 139
O el 7 PSPPSR UPSRPP 140
C ENCTYPIUDAQLE. ...ttt 141
C ENCIYPIFINAL ...ttt ettt be e 141
DECRYPTION FUNCTIONS.......ootiiuiiiiiiiiiiiiiiete ittt sae st st sae b s ens s 144
C DECIYPLITL ...ttt ettt ettt 144
C DOCTYPI ...t e e 145
C _DeCrYPLUPAALE.........c.eeeeeeieseeee ettt 146
C DeCTYPLEINQAL. ...ttt 146
MESSAGE DIGESTING FUNCTIONS ..ottt sttt seese e see e eenen 148
C DEGESHNIL ..ottt et ettt et et e et e et e et e et e et e enteeebeeenteeenneeen 148
O B - = SRS 149
C DigESLUPAQLC............c..oooeveiieieeeeei ettt ettt enae e 150
O B - 217 . USSP 150
C DiGESIFINAL ...ttt ettt ettt be s 151
SIGNING AND MACING FUNCTIONS.....c.coeuiiiiiiiiiiiiiinii ittt st s 152
C SIGNINIT ..ottt ettt 152
G USIGM e 153
C SIGNUDAALE ...ttt 154
C SIGNFIRNAL ...ttt 154
C SIGNRECOVETINIL ...ttt ettt 155
C SIGNRECOVET ...ttt 156
FUNCTIONS FOR VERIFYING SIGNATURES AND MACS .......cciiimiiniininieieienenienieeneeeeeenenaens 157
C VO IVINIL ...ttt re ettt et e ebaesbeebeenseenees 157
C VRIIIY e ettt ettt ettt ettt ettt et anees 158
C VeFIfYUDAALe. ..ottt ettt ere b enees 159
C VFTfVFIRAL. ...ttt ettt ettt nae s 159
C _VerifYRECOVEFINIL..........c.ooovveiieiieiieeie ettt ettt et et ense e 161
C _VFIfVRECOVEF .....ceeeeeeeee ettt a ettt ettt ettt naeeeaeenees 161
DUAL-FUNCTION CRYPTOGRAPHIC FUNCTIONS ......cviuiiimiiiiiiiiiiiiiiieicnie st 163
C DigeStENCIYPIUPAQLE ..ottt 163
C DecryptDigeStUPAALE ..............ccoeouiiiiiieiieeeeee ettt e 165

Copyright © 2004 RSA Security Inc. June 2004



4 C _SIGNENCHYPIUPAQGLE. ...ttt 169
¢ C _DecryptVerifyUpPALe. ............ccoocoiiioiiiiieeeeeee ettt 171
11.14  KEY MANAGEMENT FUNCTIONS ....coiiiiiiiiiiiiiiiiiiiiiiciieinnc it 174
¢’ C _GONEFALEKLY ... ettt ettt ettt ettt 175
4 C _GENETALEKEYPAIT .......c..eeeieeieee ettt ettt ettt e e aee st eenaeeens 176
¢’ C WFAPKEY ...ttt ettt ettt ettt 178
4 C URNWEADKEY ..ottt ettt ettt ettt st e et e st e sise e st eeenseessbeennsee e 180
¢’ C DOFIVEKEY ...ttt ettt ettt ettt ettt aneas 182
11.15 RANDOM NUMBER GENERATION FUNCTIONS ......ccuiiiiiiiimiiiiiiiiiiiiinieeiicsie e 184
4 C SCEARANAOM ...ttt 184
4 C _GeNErateRANAOM ............cccueiiiieeiiee ettt 184
11.16  PARALLEL FUNCTION MANAGEMENT FUNCTIONS .....c.ccciviiiiiiiiiiiiiiiiiiicic s 185
¢’ C _GEFUNCLONSIATUS ..ottt ettt ettt et e eaeeeaeeae s 185
¢ C _CANCEIFUNCIION ...ttt ettt et ereesseennes 186
11.17  CALLBACK FUNCTIONS.....c.cotitiitiiiitiitiitisiescitestesc et st esc st ne s ea s ae e re s ene e 186
11.17.1 SUFrender CAlIDACKS ............cc..coooiiiiiii e 186
11.17.2 Vendor-defined CallDACKS ...............cccoooeiiiciioiiiiiieieeeee et 187
12 MECHANISMS 188
12.1 RIS A ettt ettt b e bt be et et et e e s bt bt e bt bt eat et et entens 193
12.1.1 DCJIIITIONS ...ttt 193
12.1.2 RSA PUBLIC K@Y OBJECLS ...t 193
12.1.3 RSA Private key ODJECES...........ccooviioiiiiiiiiit e 194
12.1.4 PKCS #1 RSA k€y PAIr GEREFALION ...........c..ooveeiveiieiiiieeieeeeee e 196
12.1.5 X9.31 RSA key pair GEeREFALiON................ccccoceviiiiiiiaiiiiieeie sttt 197
12.1.6 PRCOS HI VIS RSA ..o 197
12.1.7 PKCS #1 RSA OAEP mechanism PArameters ............cceeevueeeveeesveeseesireesiseesseesseenneas 198
¢’ CK RSA PKCS MGF TYPE; CK RSA PKCS MGF TYPE PTR........ccccccovvenviniinininnn. 198
¢ CK RSA PKCS OAEP SOURCE TYPE; CK RSA PKCS OAEP _SOURCE TYPE PTRI199
¢’ CK RSA PKCS OAEP PARAMS; CK RSA PKCS OAEP PARAMS PTR.................... 200
12.1.8 PKCS #I RSA OAEP ... 200
12.1.9 PKCS #1 RSA PSS mechaniSm PArAMELErs ...........c..cccveeiueerveesieeeieeeiieeeieesseesseenaneas 201
¢’ CK RSA PKCS PSS PARAMS; CK RSA PKCS PSS PARAMS PTR........ccccovvvvinennc. 201
12,110 PKCS HI RSA PSS ..ottt 202
12,111 ISO/IEC 9796 RSA.....cooiiiiieiieieeeee ettt 203
12,112 X509 (FAW) RSA ..ottt 203
12,113 ANSTX9.31 RSA..c.ooiiiiiiiiiiiiiee et 205
12.1.14  PKCS #1 v1.5 RSA signature with MD2, MDS5, SHA-1, SHA-256, SHA-384, SHA-512,
RIPE-MD 128 08 RIPE-MD 160 ........cooueiieieiet ettt 206
12.1.15  PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or SHA-512 .............. 207
12.1.16  ANSI X9.31 RSA signature with SHA-1 ............cc.cccvoiioiininiiiiiiiiiieceeee e 208
12.2 DS A ettt ettt a e et e b te bttt eatent et e s ebeeseete st ententensenen 209
12.2.1 DCSITITIONS ...ttt ettt 209
12.2.2 DSA PUDLIC KEY OBDJECLS ...t 209
12.2.3 DSA private key OBJECES ...........c.cocooiiiiiiiiiiiiiiieieeeese et 210
12.2.4 DSA domain parameter ODJECLS ..............cccceiviiiiiiiii e 211
12.2.5 DSA key pair GeNETALiON. .............cocueiiiiiiiiie ettt 212
12.2.6 DSA domain parameter Generation ....................cc.ccvovveeueeceeeieeseenieiseeiseeiee e seeeseennes 212
12.2.7 DSA WithOut RASTHING .......cc.oouiiiiiiiiiiiii ettt 213
12.2.8 DSA Wt SHAT ...ttt 213
12.2.9 FORTEZZA tIMESIAMP..........oeevveeieeeiieeieeeiiieeie e st eeiteesiteesiaeesiseessaeetaeesaesnsaeenseeeaseas 214
12.3 ELLIPTIC CURVE.....ctiiiiiiiiiiiiiiiiiteeic ettt 214
12.3.1 EC SIGNATUFES ...ttt 216
12.3.2 DfIRTIONS. ..ottt 216

June 2004 Copyright © 2004 RSA Security Inc.



vi

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.3.3 ECDSA public k€Y 0DJECLS ..........c.ocoveeveiieiieiieiecieeee et 217
12.3.4 Elliptic curve private key OBJECES .............ccccocvciiciiiiiiiiniiiit st 218
12.3.5 Elliptic curve key pair Generation...............cc.cceuueeeeoiieeiiesieseee e 219
12.3.6 ECDSA Without RASHING ........c.cooiiiiiiiieee et 220
12.3.7 ECDSA With SHA-T ..ottt 220
12.3.8 EC mechanism parameters .................cccocvciiiiiiiiiiioiiieienieeet ettt 221
12.3.9 Elliptic curve Diffie-Hellman key derivation ..................cccccocoevceiienieiociiiicienene 224
12.3.10  Elliptic curve Diffie-Hellman with cofactor key derivation..................ccccccocevceeene.n. 224
12.3.11 Elliptic curve Menezes-Qu-Vanstone key derivation................c..cccocoeveevvenveceecrnnnens 225
12,4 DIFFIE-HELLMAN .....c.ooiiiiiiiiiiiiiiiccie et 226
12.4.1 DfIRTIONS. ..ottt ettt 226
12.4.2 Diffie-Hellman public k€y OBDJECLS............cc.cocuioiiieieieiiie e 227
12.4.3 X9.42 Diffie-Hellman public key 0bJects .............cc.cccovevvieviieviiiiiiiiiieeieeeieeieeeen, 228
12.4.4 Diffie-Hellman private key 0BJectS .............cccucueceviiininiiiiiiiiiieeieeeeese s 229
12.4.5 X9.42 Diffie-Hellman private key ODJectS .............c..ccoucueiieeieiiiiiieeeeeee e, 230
12.4.6 Diffie-Hellman domain parameter 0bJects ..............cccooioiioiioiaiisoiaieiese e 231
12.4.7 X9.42 Diffie-Hellman domain parameters 0DbJects .................ccoecvecueeveeneaneaceraeeannenn, 232
12.4.8 PKCS #3 Diffie-Hellman key pair generation ................cccccocuvvceecieceioicncnenencnennes 233
12.4.9 PKCS #3 Diffie-Hellman domain parameter generation...................cccocceuveerveeeneenne. 233
12.4.10  PKCS #3 Diffie-Hellman key derivation...................c.cccccooceioeiciioiioiioeaeeneeeee e, 234
12.4.11  X9.42 Diffie-Hellman mechanism parameters................c..ccoevueceeevuesvvereesuesiesseenseannns 235
¢ CK X9 42 DHI DERIVE PARAMS, CK X9 42 DHI DERIVE PARAMS PTR........... 235
¢  CK X9 42 DH2 DERIVE PARAMS, CK X9 42 DH2 DERIVE PARAMS PTR........... 236
¢ CK X9 42 MQV DERIVE PARAMS, CK X9 42 MQV DERIVE PARAMS PIR......... 238
12.4.12  X9.42 Diffie-Hellman key pair generation..................cc.ccoceveeenoeiciieiiaeieeeeeeee e 239
12.4.13  X9.42 Diffie-Hellman domain parameter generation.....................c..cccoccevvververneevenne. 239
12.4.14  X9.42 Diffie-Hellman key deriVation ...................ccccueeeoieviniiiiniiiiiieiieieeeeneeeee 240
12.4.15  X9.42 Diffie-Hellman hybrid key derivation...................cccccouveioeevoieieiieieneee e 241
12.4.16  X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation...................cccccoeceeenne.. 242
12.5 KEA ettt ettt ettt b et e bt sb ettt eae e 243
12.5.1 DCIIIITIONS ...ttt 243
12.5.2 KEA mechaniSm PAFAMELErs.............cccuooiioiiiiiieie ettt 243
¢  CK KEA DERIVE PARAMS; CK_KEA DERIVE PARAMS PTR............ccoeeeoveerecen.. 243
12.5.3 KEA pUBLIC k@Y OBJECES ...ttt s 244
12.5.4 KEA private key OBDJECES ...........c.oocueieeiiie ittt 244
12.5.5 KEA key pair GEeREFALION. ..............c.ccceeiiiiiiiiii et 246
12.5.6 KEA K€Y deriVation ..............c.cccoocveiieiiiiiiiiiiieciieee et 246
126 WRAPPING/UNWRAPPING PRIVATE KEYS ...c.cviiiiiiiiiiiiiiiiiiiiiic i 248
12.7  GENERIC SECRET KEY ..ottt st 251
12.7.1 DCSITITIONS ...ttt ettt ettt 251
12.7.2 Generic SECTet KEY ODJECLS ...........coovveviiiiiiiiiiieeeee et 251
12.7.3 Generic Secret key GEeNEFALION ...............ccccoceeiiiiiiiiieieeeee st 252
12.8 HMAC MECHANISMS ...ttt sttt seese sttt see e st se s s se s see e sesaeseenesaeeeneas 252
12,9 RC2 e bbbttt 253
12.9.1 DSIRILIONS. ..ottt ettt ettt sre e 253
12.9.2 RC2 56CTet KEY ODJECLS ...ttt 253
12.9.3 RC2 mechaniSm PArAmMELers ...............cc.cccuioeieeieeee ettt 254
¢ CK RC2 PARAMS; CK RC2 PARAMS PTR......cccoooiiiiieiieeeeeeseeeeeeee e 254
¢ CK RC2 CBC PARAMS; CK RC2 CBC PARAMS PTR .....cccccovoimioiiineiiieisieen, 254
¢ CK RC2 MAC GENERAL PARAMS; CK RC2 MAC GENERAL PARAMS PTR......... 255
12.9.4 RC2 K€Y GONEFALION. ...t 255
12.9.5 RC2-ECB ..ottt ettt ettt 255
12.9.6 RC2-CBC ..ottt ettt 256
12.9.7 RC2-CBC with PKCS PAAAING .........ccoooovveieiiiiiciieeeeeee e 257

Copyright © 2004 RSA Security Inc. June 2004



vii

12.9.8 General-length RC2-MAC ...........ccccovevieoiiiiiiieeeeee ettt 258
12.9.9 RO2-MAC ..ottt ettt ettt ebe e 259
T2.10  RCA oottt bbbttt b ettt et 259
L12.10.1  DEJIRELIONS. .....o.eiie ettt ettt 259
12.10.2  RC4 SECEEL K€Y ODJECLS ...t 260
12.10.3  RCA K€Y GEHEFALION. ...ttt 260
12.10.4  RCE MECHANISTI ...ttt ettt 261
I2.11  RCS ettt ettt 261
12.11.1 DISIRILIONS. ..ottt ettt ettt sre b 261
12.11.2 RC5 SCTet KEY ODJECLS ..ottt e 262
12.11.3  RC5 MechaniSm PAVAMELEFS .............c..ccoecieiueiieiieeeeeee ettt 262
¢ CK RC5 PARAMS; CK RC5 PARAMS PTR.......ociiiiiiiiieeeeeeeeee e 262
¢ CK RC5 CBC PARAMS; CK RC5 CBC PARAMS PTR .....ccoovoiriieiiiiiiieiieeeiaee 263
¢ CK RC5 MAC GENERAL PARAMS; CK RC5 MAC GENERAL PARAMS PTR......... 263
12,114 RCS5 K€Y GEHEFALION. ...ttt 264
I12.11.5 RCOS-ECB ..ottt ettt ettt 264
I2.11.6 RCOS-CBC ..ottt ettt 265
12.11.7  RC5-CBC With PKCS pAAAING ...........ccooooveviiciiiiiiiiiieeiee e 266
12.11.8 General-l1ength RC5-MAC ..........c.cccooiiiiiiiiiiiiiiiieeeese ettt 267
I12.11.9  ROS-MAC ..ottt 268
12,12 AES bbbt s 268
12.12.1 DISIRILIONS. ..ottt ettt ere e 268
12.12.2  AES SECret k€Y OBJECES ......cccooviiiiiiiiiie et 268
12.12.3  AES K@Y GENETALION ..ot 269
12.12.4  AES-ECB....c.coioiiiiiiiiiee ettt 270
12125 AES-CBC ..ottt 271
12.12.6  AES-CBC With PKCS DAAAING.........c.oooeiiiieiiiieiiietsee e 272
12.12.7  General-length AES-MAC ..........cccoooiiieiiii ettt 272
12.12.8  AES-MAC ...ttt 273
12.13  GENERAL BLOCK CIPHER .......cciiuiiiiiiiiiiiiniiiiitiiitiiieeic et 274
12.13.1 DCIIIITIONS ...ttt 274
12.13.2  DES SECret KeY OBJECLS .........ccooieiiiiiie e 275
12.13.3 CAST SECHet kY OBDJECES .........ccueeiieeiieiee et 276
12.13.4 CAST3 SECTEt KEY ODJECLS ... 277
12.13.5 CASTI28 (CASTS) Secret KeYy ODJECLS ..........cccuieeeiiiiiiiiiiiiceieeeeeee e 277
12.13.6  IDEA SECret K@Y ODJOCLS .........ooeeiieiiii ettt 278
12.13.7  CDMEF Secret K€Y ODJECES .........c.ccceieiiieiiii ettt 278
12.13.8 General block cipher mechanism parameters ...................cccoceevveeieceeceeeieeseeneenseannns 279
¢ CK MAC GENERAL PARAMS; CK MAC GENERAL PARAMS PTR.........cccovveunnene. 279
12.13.9 General block cipher key generation..................cccocoocveviioeioieiiieoiiieeeseeee e 280
12.13.10  General block Cipher ECB...........cc.ccooviiiiiiiiciiiie et 280
12.13.11  General block cipher CBC...........ccccoouiiiiiiiiiiiit ettt 281
12.13.12  General block cipher CBC with PKCS padding .................c.ccoveivieiciaiiiniiieieeene 282
12.13.13  General-length general block cipher MAC.............ccccooovviviioiiiiiiieiieeeeeeeee e 283
12.13.14  General block cipher MAC ..............ccocoeiieiiiiiiiiiiieee et 284
12.14  KEY DERIVATION BY DATA ENCRYPTION — DES & AES ..., 284
12.14.1 DfIRTIIONS. ......oeeieeee ettt 285
12.14.2  MechaniSm PAFAMELETS ...........c..cououeiuieiieieeie ettt 285
12.14.3 MeChanism DESCEIDIION ...............cc.cceeiueiieiieicie ettt 286
12.15 DOUBLE AND TRIPLE-LENGTH DES .......c.ccooiiiiiiiiiic 286
12.15.1 DfIRTIONS. ..ottt 286
12.15.2  DES2 SCret k€Y ODJECES ..........ooueeiuiiiiiiiieeeeee e 287
12.15.3  DES3 SECFEt K€Y ODJECLS .........ooouveeeeiieiecieeeeie ettt 288
12.15.4  Double-length DES key GEREration ..............cccccocieciiiiiiniiniiiiiaiieeeieeneee e 288
12.15.5 Triple-length DES Order of OPerations ................ccccueeeieeiiesieiieeeese e 289
June 2004 Copyright © 2004 RSA Security Inc.



viii

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.15.6  Triple-length DES in CBC MOde..............c..cccccuovuieieiaiiiieiieieeieeeiieeie e 289
12.15.7  DES and Triple length DES in OFB Mode...............c.ccccccoiiioiioinininiiniiiiiiaieeen, 290
12.15.8  DES and Triple length DES in CEFB Mode .............cc.ccoooueiiaiiiiiiieiieeee e 290
12,16 SKIPJACK ..ottt bbbttt ettt st 291
12.16.1 DISINILIONS. ..ottt ettt et etaesae e 291
12.16.2  SKIPJACK SECIet K€Y ODJECLS .......cc.ceueiueeiiiiiiiiiiiieieeeeee et 292
12.16.3  SKIPJACK MechaniSm DAFVAMELEFS .............c.cccceveieeauieaiei et 293
¢  CK SKIPJACK PRIVATE WRAP_PARAMS:
CK SKIPJACK PRIVATE WRAP PARAMS PTR.......occooovoieiiiiiiieieeieee et 293
¢  CK SKIPJACK RELAYX PARAMS; CK _SKIPJACK RELAYX PARAMS PTR............... 294
12.16.4  SKIPJACK K€y QEHETALION.............cccveeveeiieiiieiieeiieeieeeie et 295
12.16.5  SKIPJACK-ECBGA........ccoiiieiiiee sttt 295
12.16.6  SKIPJACK-CBCOA ...ttt 296
12.16.7  SKIPJACK-OFBOA .......cooooiiiriiiiiiiiiiieee ettt 296
12.16.8  SKIPJACK-CFBOA.....c..ccooiiiiiiniiiiiiieiieieeet ettt 297
12.16.9  SKIPJACK-CFB32.....cociiiiieiieet ettt 297
12.16.10  SKIPJACK-CFBIG.....c..ccooioiiiiiieiiiieieeet sttt 298
12.16.11  SKIPJACK-CFBS.......cocciiiiiiiiiiiiiieetse ettt 298
12,1612 SKIPJACK-WRAP .....c..ccovimiiiiiiiiiiiiiieiieet ettt 299
12.16.13  SKIPJACK-PRIVATE-WRAP .......ccoeciieiiiieiiieeeeeee e 299
12.16.14  SKIPJACK-RELAYX .....ccoiiiiiiiiiieiieeeeee ettt 299
12,17 BATON L.ttt sttt sttt s 299
12.17.1 DISIRILIONS. ..ottt ettt sae e 299
12.17.2  BATON S€Cret K€Y ODJECLS..........cccoviiuiiiiiiiiiiiisteeteee et 300
12.17.3  BATON K€Y GEREFALION ...ttt 301
12.17.4  BATON-ECBI28 ..ottt ettt 301
12.17.5  BATON-ECB6........c.ccccimiiiiiiiiiiiiiiieiieeet ettt 302
12.17.6 BATON-CBCI28........coiiiiieieeeeeeee ettt 302
12.17.7  BATON-COUNTER ......ccooioiiirieiiiseeet ettt 303
12.17.8  BATON-SHUFFLE ........ccccccooiimiiiiiiniiiiiinieiie ettt 303
12.17.9  BATON WRAP ..ottt 304
12,18 JUNIPER ..ottt 304
12.18.1 DfIRTIIONS. ..ottt ettt 304
12.18.2  JUNIPER SeCret k€Y ODJECLS ..........cccuoieeiiiiiiiiie it 304
12.18.3  JUNIPER k€Y EREFALION. ...........ccvveeeeieeiieieeie ettt 305
12,184 JUNIPER-ECBI2E ....cocuiiieiiiiieee ettt 306
12.18.5  JUNIPER-CBCI28 ..ottt ettt 306
12.18.6  JUNIPER-COUNTER........cccccooiiiiiimiiiiiniiatseeett sttt 307
12.18.7  JUNIPER-SHUFFLE.........cccccocvcumiimiiiiiimiiiiiiniiiiiineeitee ettt 307
12.18.8  JUNIPER WRAP........cooiiiieiiieieie ettt 308
L2.19  MID2 .t bbbttt b ettt b et ene 308
T2.19. 1 DEJIRELIONS. ..ottt ettt 308
12.19.2 MD2 QIESL......c.oouiiiieiiiiiieiiieeeee ettt 308
12.19.3 General-length MD2-HMAC ...........ccccocooimiiiiiiiiiiiiieeeee ettt 308
12,194 MD2-HMAC ...ttt 309
12.19.5  MD2 K€Y deFIVALION .......ccuvveeeveeiieeie ettt siveesnsee e 309
12.200 MDS oottt bttt 310
12.20.1 DCSIIITIONS ...ttt 310
12202 MDS QIESL.....oeeeeiiiieiiieeeee ettt 310
12.20.3 General-length MDS-HMAGC ..........ccoocoiioiiiiiiiiieeet ettt 311
12.20.4  MDS-HMAC ..ottt 311
12.20.5  MDS5 K€Y A IVALION ..ottt e 311
1221 SHART ettt et be et 312
L2211 DEJIRELIONS. ...c..o.eiiee ettt ettt 312
12212 SHA-I @IGESTt ... 313

Copyright © 2004 RSA Security Inc. June 2004



X

12.21.3 General-length SHA-1-HMAC ................cccoooivuivieiiiiiieieeeeeeeeeeeie e 313
12.21.4  SHA-T-HMAC ...ttt 313
12.21.5  SHA-1 key deriVation............ccccoociiuiiieiiiie ettt 314
1222 SHA 250 .ottt ettt 315
12.22.1 DISINILIONS. ..ottt ettt et etaesae e 315
12.22.2 SHA-256 QIGESE ..ottt ettt 315
12.22.3 General-length SHA-256-HMAC............ccocoiioiiiiiiiie et 315
12.22.4  SHA-256-HMAC ........coovoiiiiiiiiiniiiit ettt 316
12.22.5  SHA-256 key deriVation...............cc.cccoevvecieiieiiieiieeiieeieeeie et e sseese s 316
12.23  SHA-384 ...ttt ettt b ettt b et ebe et nnen 316
12.23.1 DfIRTIONS. ..ottt ettt 316
12.23.2 SHA-384 dIGEST ..ottt 316
12.23.3 General-length SHA-384-HMAC ............cccccoovuiiiiiiiiieieeieeieeieeie e 317
12.23.4  SHA-384-HMAC .....c.ocooiiiiiiieiee ettt 317
12.23.5  SHA-384 key deriVation ...............ccoccueiieiiiiiie ettt 317
12.24  SHAGST2 (oot et ettt 317
12.24.1 DISIRILIONS. ..ottt ettt sre e 317
12.24.2  SHA-512 QIGESE ..ottt ettt 317
12.24.3 General-length SHA-512-HMAC............ccoooiioiiiiiiiie e 318
12.24.4  SHA-512-HMAC .....c.ocooiiiiiiiiiiiiiet ettt 318
12.24.5  SHA-512 key deriVation...............cccceevueiieiiieiieiieeieeeieeie et sseese s 318
12.25  FASTHASH ..ottt sttt ettt st be et enaes 318
12.25.1 DfIRTIIONS. ..ottt ettt 318
12.25.2  FASTHASH IEST .....ccooviieiiiiieiiiiieetsteee ettt 318
1226  PKCS #5 AND PKCS #5-STYLE PASSWORD-BASED ENCRYPTION (PBE).......cccccvviiiiiiinnens 319
12.26.1 DCJIIITIONS ...ttt 319
12.26.2  Password-based encryption/authentication mechanism parameters........................... 320
¢ CK PBE PARAMS; CK PBE PARAMS PTR ......oooooooeeeoeeeeoeeeeeoeeeeeeeeeeeeeee e 320
12.26.3  MD2-PBE for DES-CBC ......c.ooiiiiieieieeet ettt 320
12.26.4  MDS-PBE for DES-CBC ......coouiiiiiieiiiiese ettt 321
12.26.5  MDS5-PBE for CAST-CBC ......coooiiiiiiiiiiiiitseeseet et 321
12.26.6  MDS5-PBE for CAST3-CBC .......cccoooiiiiieieeeee ettt 321
12.26.7  MDS5-PBE for CAST128-CBC (CASTS5-CBC)....coccooiieiieieiieieiseeseeee e 321
12.26.8  SHA-1-PBE for CAST128-CBC (CASTS-CBC) ....cooeieiriiiiieeiieseeeeeeeea 322
12.26.9  PKCS #5 PBKDF? key generation mechanism parameters .................cccocoeuceereeeneenne. 322
¢’ CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPE;
CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPE PTR......ccccoooummcinioiinieanenes 322
¢  CK _PKCS5 PBKDF2 SALT SOURCE TYPE;
CK PKCS5 PBKDF2 SALT SOURCE TYPE PTR......coccoooviiiiiiiiiieiieiee et 323
¢’ CK_ PKCS5 PBKD2 PARAMS; CK PKCS5 PBKD2 PARAMS PTR........ccccccoovrveunine. 323
12.26.10  PKCS #5 PBKD2 key Generation.................ccoccvevueeeeeeeaneaiiaieeieeneesseesesiseseesseesseannes 324
12.27  PKCS #12 PASSWORD-BASED ENCRYPTION/AUTHENTICATION MECHANISMS ........cccccvviurunnnn 324
12.27.1  SHA-1-PBE for 128-Dit RC4......c.occooeoiiiiiiieeiieeeseee e 326
12.27.2  SHA-1-PBE for 40-Dit RCH.....c..ccoocimiiiiriiiiiieiiieeeeee ettt 326
12.27.3  SHA-1-PBE for 3-key triple-DES-CBC ..........cccccovuimiioieiieieeeeeieeie e 326
12.27.4  SHA-1-PBE for 2-key triple-DES-CBC .........c.ccccootiiiiiiieiieseeeeeeee e 327
12.27.5  SHA-1-PBE for 128-bit RC2-CBC........ccoocoiiiriiiieiiee e 327
12.27.6  SHA-1-PBE for 40-bit RC2-CBC.......ccccooeoiiiiriiiiinciiiisetieeet e 328
12.27.7  SHA-1-PBA for SHA-1-HMAC .........ccoccoioiiiiieieeeieee sttt 328
12.28  RIPE-MD Lottt ettt ettt et st be e ebe et 329
12.28.1 DfIRTIONS. ..ottt 329
12.28.2  RIPE-MD 128 @igESt.......cocciiiiieiiiiiiiiiiieetseeet ettt 329
12.28.3 General-length RIPE-MD 128-HMAC ...........c.ccccoovovieiiiiiieieeieeee e 329
12.28.4  RIPE-MD 128-HMAC ....c..coiuiieiiiiiieii ittt 330
12.28.5  RIPE-MD 160 ..ottt 330

June 2004 Copyright © 2004 RSA Security Inc.



PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.28.6  General-length RIPE-MD 160-HMAC ...........cc.ccccooveiiioiiiiiieeieeieecieeie e 330
12.28.7  RIPE-MD T160-HMAC .......coouoieiiiiiieiiieet ettt 331
1229 SET ettt bbbt b et be et 331
12.29. 1 DEJIRELIONS. .....o.eeee ettt 331
12.29.2 SET MECRANISIM PATAMELETS...........ccoooveeveeiieeiieiieieee ettt saseeseens 331
¢ CK KEY WRAP SET OAEP PARAMS; CK KEY WRAP SET OAEP PARAMS PTR. 331
12.29.3 OAEP key wrapping for SET ...........ccoooiiiiiiiiiiieeeeeee et 332
1230 LYNKS Lottt st 332
12.30.1 DCJIIITIONS ...ttt 332
12.30.2  LYNKS K€Y WIAPPING ......oeeeeeeeeeeee ettt 333
1231 SSL ettt 333
12.31.1 DISIRILIONS. ..ottt ettt ettt sae e 333
12.31.2  SSL MeChARiSI PAFAMELETS ..........cc.ccueeeiieiiiiiieeiieit ettt 334
¢#  CK SSL3 RANDOM DATA.....c.occooeiiiiniiiiiniiieiseeteeeteeet et 334
¢  CK SSL3 MASTER KEY DERIVE PARAMS;
CK SSL3 MASTER KEY DERIVE PARAMS PTR.......ccccooviiiiiiniiiiieieeeeseeee e 334
¢  CK SSL3 KEY MAT OUT; CK SSL3 KEY MAT OUT PTR.....ccccovovioiiiaiieeeen, 335
¢  CK SSL3 KEY MAT PARAMS; CK SSL3 KEY MAT PARAMS PTR........cccoovuvvunne. 335
12.31.3  Pre_master K@y QN AtiON ..............ccccccuuuereiiie ittt 336
12.31.4  Master key deriVAtion ...............c..ccueevecueiiueeiesieieie ettt sre e sse s 337
12.31.5  Master key derivation for Diffie-Hellman....................cccccocvocoenininiininieniaeeeenn, 338
12.31.6  Key and MAC deriVALion ..............c..ccooouiiiiiiiiiieiieee ettt 339
12.31.7  MDS5 MACING 071 SSL 3.0 ..ottt 340
12.31.8  SHA-1 MACING i1 SSL 3.0...c..cocoiiiiiiiiiiiiiiiicieeeeeee e 341
L1232 TS et 341
12.32.1 DfIRTIIONS. ...ttt 341
12.32.2 TLS MEChANISI PAVAMEIEFS........cueeeiveeeieeeiie e eieeeeteeeieeeaeeetaeeaaesvaeesaesnseeesaesnseas 342
¢ CK TLS PRF PARAMS; CK TLS PRF PARAMS PTR ......cccoovoiiiiiiiieiiieiseens 342
12.32.3 TLS PRF (pseudorandom fUnCtion) .............cc.ccoeceeveeoiaveiieiiesieeee e 342
12.32.4  Pre_master ey QN AtiON ..............ccccceuuiriirie ittt 343
12.32.5  Master key deriVAtion ...............cc.cceevecueieeieesieieieeeeeee ettt ste e ssaesse e 343
12.32.6  Master key derivation for Diffie-Hellman....................cccccocveioeniniiniininieniaeeeeenn, 344
12.32.7  Key and MAC deriVALiOn ..............c..ccoccuiiiiieiiiieiieeeee et 345
1233 WTLS ettt b ettt b ettt sa e 347
12.33.1 DCSINILIONS. ..ottt ettt ettt 347
12.33.2 WTLS MeChQniSm PATAMELEFS ............cccccccuevueiiriiiiiiiieiieeee ettt 347
¢ CK WTLS RANDOM DATA; CK WTLS RANDOM DATA PTR .......ccccovcvniciniainnnnn. 347
¢ CK WTLS MASTER KEY DERIVE PARAMS;
CK WTLS MASTER KEY DERIVE PARAMS PTR.....coccooccoiiiiiiiieiiietseee e 348
¢  CK WTLS PRF PARAMS; CK WTLS PRF PARAMS PTR......ccccccoovvimiiiniiiiiiiaennn. 348
¢ CK WTLS KEY MAT OUT; CK WTLS KEY MAT OUT PTR.....ccccovovciriicineannnn, 349
¢ CK WTLS KEY MAT PARAMS; CK_WTLS KEY MAT PARAMS PTR......................... 350
12.33.3  Pre master secret key generation for RSA key exchange suite ................ccccccoceuennc.n. 351
12.33.4  Master secret k€ deriVAtioN.................ccccuovoiiviiiiiiiiieee et 351
12.33.5  Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography ... 352
12.33.6 WTLS PRF (pseudorandom fUncCtion).................cc.cccoeveevienieeceeeeeneenieeineeiessessesseennes 353
12.33.7  Server Key and MAC derivation................ccccoccociriiuiiiciiiioiinininiiieesteeeeee e 354
12.33.8 Client key and MAC derivVation...............ccccccoiouiioeiiiiiii it 355
12.34  MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS .......ccccoiiiiiiniiiiiiiiniieiinecec s 356
12.34.1 DISIRILIONS. ..ottt ettt ettt ere e 356
12.34.2  Parameters for miscellaneous simple key derivation mechanisms.................c..c......... 357
¢  CK KEY DERIVATION STRING DATA; CK KEY DERIVATION STRING DATA PTR357
¢  CK EXTRACT PARAMS; CK EXTRACT PARAMS PTR .....cccccoooimiiiiiieiiiieiieeen, 357
12.34.3 Concatenation of a base key and another key ................cc.cccocevoievciioiiiiiniiiiieeee, 357

Copyright © 2004 RSA Security Inc. June 2004



xi

12.34.4 Concatenation of a base key and data.......................cccccoovvevcieviieciecieiiiiiiecieeeieenes 359
12.34.5 Concatenation of data and a base key ...............c.ccccoccecevevininiiiiiiiiiieeeescec e 360
12.34.6  XORing of akey and data..................ccooccoeoiiiiioiiiiiiiie et 361
12.34.7  Extraction of one key from another K€y ................cccccooioieoioenenieiciieiieieeeeee 362

12.35 OIS ettt bbbt h e a et et be e bt ent et ennen 364
12.35.1 DCJIIITIONS ...ttt 364
12.35.2 CMS Signature MechaniSm OBJECLS .............cccooouiiiieiiiiiieiieeeee e 364
12.35.3 CMS MECRANISI PAFAMEIETS .........ooevveeeieeeiieeeieeeieeeieeeiee e eteesaee e e sbaessseessseeneneas 365

. CK _CMS SIG PARAMS, CK_CMS SIG PARAMS PTR........cccoovoieieiieiieieeeeeeeene 365
12.35.4 CMS SIGHATUFES ...ttt ettt ettt ettt e ettt eeee e 366

12.30  BLOWEFISH ..ottt sttt ettt sttt et bt ettt et be b b et nennen 367
12.36.1 DISIRILIONS. ..ottt ettt ettt sae e 368
12.36.2  BLOWFISH Secret k€Y ODJECES..........ccuocueiiriniiiiiiiiiieeeeeee st 368
12.36.3  Blowfish key GENeration.............cccccuioiioiiiiiiiiie et 369
12.36.4  BIOWSISH ~CBC ...ttt 369

12.37  TWOFISH ...ttt sttt s ettt s ebe et 369
12.37.1 DCJIIITIONS ...ttt 370
12.37.2 TWOffish SECret k€Y OBDJECES..........cccueiieiiii et 370
12.37.3 TWOSISh K€Y GENETALION ...t 370
12.37.4 TWOSISI =CBC......c..ooove ettt et et sbeebe e 371

13 CRYPTOKI TIPS AND REMINDERS 371
13.1 OPERATIONS, SESSIONS, AND THREADS......ccetiieeiiiiirreeeeeeeeeiiitereeeeeeeeeeissrreeseeseesiissreseseeeesssnnes 371
13.2 MULTIPLE APPLICATION ACCESS BEHAVIOR ......ccooiiiiiiiiiiiiiieiieiieie et 372
13.3 OBJECTS, ATTRIBUTES, AND TEMPLATES. .....ccciitiiiituteeeeeeeeeieiiereeeeeeeiesaseeeeseessessnseeeeesssssnnnes 372
13.4 SIGNING WITH RECOVERY .....ceiiiiiiiiiiiiiiiiiieiteiente sttt ettt sttt s 373

A MANIFEST CONSTANTS 375
B  TOKEN PROFILES 382
B.1 GOVERNMENT AUTHENTICATION-ONLY .....coiiiiuiiiiiiiiiiiiiiiienie it s sne s sne s 383
B.2 CELLULAR DIGITAL PACKET DATA ...cueiiiiiiiiniintineetct ettt 383
B.3 OTHER PROFILES ..ottt ettt etesteste sttt sat e essetesse st besaeeae et esnesaesaesbesaeeneeneennennens 384

C COMPARISON OF CRYPTOKI AND OTHER APIS 385
C.1 FORTEZZA CIPG, REV. 1.52 1oiiiiiieee ettt 385
C2 GOS-APT .ttt bttt ettt b ettt ae 387

D INTELLECTUAL PROPERTY CONSIDERATIONS 389

E  METHOD FOR EXPOSING MULTIPLE-PINS ON A TOKEN THROUGH CRYPTOKI

(DEPRECATED) 390
F  REVISION HISTORY 391
List of Figures

FIGURE 1, GENERAL CRYPTOKI IMODEL.........ccotiiiutriiiieeeeeeeiciirreeeeeeeeeeeinrreeeeeeeeeeesnsnseeeeaens 14
FIGURE 2, OBJECT HIERARCHY ...coovviiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeee e eeeeeeeeeeeeeeeeeees 15
FIGURE 3, READ-ONLY SESSION STATES ....cottttitiiiiiiiiiieieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeeesseeeeees 20
FIGURE 4, READ/WRITE SESSION STATES ....c.eitteitttetieeeeeeeeiiirtreeeeeeeesessasseeeeeesessssnsssneeeessess 21
FIGURE 5, OBJECT ATTRIBUTE HIERARCHY ......uuuiiiiiieeeeeeeiciitreeeeeeeeeceivtveeeeeeeeeeenvvnneeeeees 62
List of Tables

June 2004 Copyright © 2004 RSA Security Inc.



Xil PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

TABLE 1, SYMBOLS.....coiiiiiiiiiiiiiie e 10
TABLE 2, PREFIXES ....ooiiiiiiiiiiii e 10
TABLE 3, CHARACTER SET .. oottt eeeeeeeteeee e e e e e e ettt e e e e e e et taaaseeeeseeeeesaaaaneeeeeeeesssannans 12
TABLE 4, READ-ONLY SESSION STATES ....cceititiititrieeeeeeeeieiirrreeeeeeeeeeieersreeeeeeeeeeesnsreseseaens 20
TABLE 5, READ/WRITE SESSION STATES ....cceeiutieeeeiteeeeeeitreeeeeeiteeeeeeeireeeeeesseeeeeeisneeesenneeens 21
TABLE 6, ACCESS TO DIFFERENT TYPES OBJECTS BY DIFFERENT TYPES OF SESSIONS........ 22
TABLE 7, SESSION EVENTS ...ttt ittt ettt e e e e ettt e e e e e e e eetaaaeeeeeeeeeeasannnns 22
TABLE 8, SUMMARY OF CRYPTOKI FUNCTIONS .....ccoiiiiiiiiiiiiiiiieeee e et 27
TABLE 9, MAJOR AND MINOR VERSION VALUES FOR PUBLISHED CRYPTOKI SPECIFICATIONS37
TABLE 10, SLOT INFORMATION FLAGS ...coiiiiiiiiiieeieiiee et eeeaaeeeea e 39
TABLE 11, TOKEN INFORMATION FLAGS ...outueiiiiiiiiiieeee ettt 42
TABLE 12, SESSION INFORMATION FLAGS ...ttt 48
TABLE 13, MECHANISM INFORMATION FLAGS ....uvvviiiiiiiiiiiiiieeeeee e 54
TABLE 14, C_INITIALIZE PARAMETER FLAGS ....cccutiiiiiiiiiiiiiiciceeceeeeee e 61
TABLE 15, COMMON FOOTNOTES FOR OBJECT ATTRIBUTE TABLES ......coovviiiiieeeeeeeeeeeeinnnnn. 66
TABLE 16, COMMON OBJECT ATTRIBUTES .....ccittttieieeeeeeieiirrereeeeeeeeeieirreeeeeeeeeeeeesrreseseeens 67
TABLE 17, HARDWARE FEATURE COMMON ATTRIBUTES .....uvvviiieieeeiiieirrreeeeeeeeeeeinrreeeeeeees 67
TABLE 18, CLOCK OBJECT ATTRIBUTES ......cciitttuttrrieieeeeeeieiirrrreeeeeeeeeennirseeeeseeeeeensssneeeeesens 68
TABLE 19, MONOTONIC COUNTER ATTRIBUTES .....cottttuieiieieieiitieiieeeeeeeeeeeeaneeeeeeeeesesnnnnns 69
TABLE 20, USER INTERFACE OBJECT ATTRIBUTES ......cceeoiitiiririeeeeeeeeiciireeeeeeeeeeeenvveeeeeans 70
TABLE 21, COMMON STORAGE OBJECT ATTRIBUTES .....ccooviuvrrreeeeeeeeeiiirrreeeeeeeeeeeinrrreeeeeens 71
TABLE 22, DATA OBJECT ATTRIBUTES ....coiiiiiiiittieeieeeeeeeeeeiirreeeeeeeeeeeseaseeeeeseeeeesnsassneneeesens 72
TABLE 23, COMMON CERTIFICATE OBJECT ATTRIBUTES......cctttttttieeeeeeeeieeiieee e e eeeeeeannnnns 73
TABLE 24, X.509 CERTIFICATE OBJECT ATTRIBUTES.......ccccvtttieeeeeeeeicirrreeeeeeeeeeeirveeeeeans 75
TABLE 25: WTLS CERTIFICATE OBJECT ATTRIBUTES......c.cuvvrreeeeeeeeeieirrreeeeeeeeeeesnrrneeeeeens 77
TABLE 26, X.509 ATTRIBUTE CERTIFICATE OBJECT ATTRIBUTES......cccvvvveeeieeeeeeeirrreeenenen. 78
TABLE 27, COMMON KEY ATTRIBUTES ....ouuuuueiiiiiiiiitttieeeeeeeetieiesneeeeeeeeesssnnneeseeesssssnnnnns 79
TABLE 28, COMMON PUBLIC KEY ATTRIBUTES .....ccevtiiiiiiieiirrieeeeeeeeeeieirereeeeeeeeeeeinsreeeseeens 81
TABLE 29, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI ATTRIBUTES FOR PUBLIC
KE Y S ittt e ettt e e e ettt e e e et e e e e eaaeeeeetaeeeeeaaasaee e e abaaeeeaabaee e e ataeeeeanbaaaeeaaaaeeeaantaeeeeanraaaas 82
TABLE 30, COMMON PRIVATE KEY ATTRIBUTES......cuutuieeiiiiiiiitieiieeeeeeeeeetveneeeeeeeeeessnnnnnns 82
TABLE 31, COMMON SECRET KEY ATTRIBUTES ....ceveiiiiiiiieiirieeeeeeeeeeeieiiereeeeeeeeeeeanrnneeeeeens 85
TABLE 32, COMMON DOMAIN PARAMETER ATTRIBUTES ....cuvvvviiiieeeiiiirreeeeeeeeeeeennreeeeeens 88
TABLE 33, COMMON MECHANISM ATTRIBUTES ....cvviiiiiiiiiiiiireeeeeeeeeeiirrreeeeeeeeeenannneeeeeeees 88
TABLE 34, MECHANISMS VS. FUNCTIONS ...uuuiiiiiiiiiiiieee ettt et e e e e eeaeannnas 188
TABLE 35, RSA PUBLIC KEY OBJECT ATTRIBUTES .....ccoiiiuttirieeeeeeeeeciinreeeeeeeeeeenrvneeeeeans 193
TABLE 36, RSA PRIVATE KEY OBJECT ATTRIBUTES .....cccooitvveeeeeeeeeeieiirreeeeeeeeeeeenrrneeeeees 194
TABLE 37, PKCS #1 v1.5 RSA: KEY AND DATA LENGTH ...ccoooiiiiiiiiiiieeieeeeeeeeiiieeeeeen. 198
TABLE 38, PKCS #1 MASK GENERATION FUNCTIONS .....coiiiiiiiiieiee et 199
TABLE 39, PKCS #1 RSA OAEP: ENCODING PARAMETER SOURCES.......cccccceeeeiuvrrrnennn... 199
TABLE 40, PKCS #1 RSA OAEP: KEY AND DATA LENGTH .......cooovviivrieeieeeeeeecvveeeennne. 201
TABLE 41, PKCS #1 RSA PSS: KEY AND DATA LENGTH ....cooviiiiiiiiiieieeeeeeeeeeevveeeee 202
TABLE 42, ISO/IEC 9796 RSA: KEY AND DATA LENGTH.....ccoovviiiiiiiiiiiiieeiiiiieeeeeeeeeeeen 203
TABLE 43, X.509 (RAW) RSA: KEY AND DATA LENGTH ...cuveeiiiiiieiieeieeiee e 205
TABLE 44, ANSI X9.31 RSA: KEY AND DATA LENGTH ....ovvvviiiiiiiiiiiinieeeeeeeeeeecvveeeeenee 206

Copyright © 2004 RSA Security Inc. June 2004



Xiii

TABLE 45, PKCS #1 v1.5 RSA SIGNATURES WITH VARIOUS HASH FUNCTIONS: KEY AND

DATA LENGTH.....coiitiiieeiiee ettt e et e e e e eaae e e e e ata e e e e saasaeeeeensaeeeeeasaeaeeennnes 207
TABLE 46, PKCS #1 RSA PSS SIGNATURES WITH VARIOUS HASH FUNCTIONS: KEY AND

DATA LENGTH. ....uuttiiiiiiiiieeiciieee e eeeectee e e e e eeeetaa e e e e e e e e e ettbaeeeeaeeeeennraasaeeaaeeeeanns 208
TABLE 47, ANSI X9.31 RSA SIGNATURES WITH SHA-1: KEY AND DATA LENGTH........ 208
TABLE 48, DSA PUBLIC KEY OBJECT ATTRIBUTES.......ccotvtttrreeeeeeeeieirnreeeeeeeeeeennrnneeneeees 209
TABLE 49, DSA PRIVATE KEY OBJECT ATTRIBUTES......coetvttieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 210
TABLE 50, DSA DOMAIN PARAMETER OBJECT ATTRIBUTES .......cceeveitririreeeeeeeeecnrreeenennn. 211
TABLE 51, DSA: KEY AND DATA LENGTH ...coooooiiiiiiiiiiiiieeeeeeeee 213
TABLE 52, DSA WITH SHA-1: KEY AND DATA LENGTH .....cooooiiiiiiiiiiiiiiiiieeeeeeeeeeee 214
TABLE 53, FORTEZZA TIMESTAMP: KEY AND DATA LENGTH .....cccovvvvvvveieiieieeeeeeeeeenen 214
TABLE 54, MECHANISM INFORMATION FLAGS ....ccoooiiiiiiiiiiiiiieeeeee, 214
TABLE 55, ELLIPTIC CURVE PUBLIC KEY OBJECT ATTRIBUTES......ccceeiuvreeereeeeeeecnrrreeeennn. 217
TABLE 56, ELLIPTIC CURVE PRIVATE KEY OBJECT ATTRIBUTES ....ccocvvvveeiieeeeeeirrreeeeenen. 218
TABLE 57, ECDSA: KEY AND DATA LENGTH ....coootttiiiiiiiiieieeeeee et 220
TABLE 58, ECDSA WITH SHA-1: KEY AND DATA LENGTH....cc.cooiiiiiiirieieeeeeeeeivveeeeen. 221
TABLE 59, EC: KEY DERIVATION FUNCTIONS .....cooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee, 221
TABLE 60, DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES .....cccccvvvveeeieeeeeeeinvreeeeennn. 227
TABLE 61, X9.42 DIFFIE-HELLMAN PUBLIC KEY OBJECT ATTRIBUTES ....cuuuveeeeeeeeeevinnnnn. 228
TABLE 62, DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES .......cvvvieieeeeeeeennvreeeennnn. 229
TABLE 63, X9.42 DIFFIE-HELLMAN PRIVATE KEY OBJECT ATTRIBUTES .......ccccovuvreeen.... 230
TABLE 64, DIFFIE-HELLMAN DOMAIN PARAMETER OBJECT ATTRIBUTES......cccccovvvveeee.... 231
TABLE 65, X9.42 DIFFIE-HELLMAN DOMAIN PARAMETERS OBJECT ATTRIBUTES............ 232
TABLE 66, X9.42 DIFFIE-HELLMAN KEY DERIVATION FUNCTIONS ......coooovvvviiiiiieneeeennn. 235
TABLE 67, KEA PUBLIC KEY OBJECT ATTRIBUTES ....coooiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 244
TABLE 68, KEA PRIVATE KEY OBJECT ATTRIBUTES......ccoevutveieeeeeeeeieiinreeeeeeeeeeennrrneeeeeees 245
TABLE 69, KEA PARAMETER VALUES AND OPERATIONS.......ccovvviiiiriiieieeeeeeeeeeeeeeeeeeeeeeeens 247
TABLE 70, GENERIC SECRET KEY OBJECT ATTRIBUTES .....cuvvviiiieeeeeicirnreeeeeeeeeeecirrereneenns 251
TABLE 71, RC2 SECRET KEY OBJECT ATTRIBUTES ......cccotitrreeeeeeeeeeictinreeeeeeeeeeeenrrreeneees 253
TABLE 72, RC2-ECB: KEY AND DATA LENGTH ....coooiiiiiiiiiieieeiee e 256
TABLE 73, RC2-CBC: KEY AND DATA LENGTH.....couuuiiiiiiiiiiiiiieeee et 257
TABLE 74, RC2-CBC WITH PKCS PADDING: KEY AND DATA LENGTH.........cccccuvvrneeen.... 258
TABLE 75, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH ....ccovveeeeeeennrrnnnn.... 259
TABLE 76, RC2-MAC: KEY AND DATA LENGTH.......coooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 259
TABLE 77, RC4 SECRET KEY OBJIECT ....ccctutuuiieiiieiieieeeee ettt eeeeeeaa e e e e e eeeeaaannnas 260
TABLE 78, RC4: KEY AND DATA LENGTH ......uvviiiiiieiiieeeiiieeeeee ettt 261
TABLE 79, RC5 SECRET KEY OBJECT ....ccoiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee 262
TABLE 80, RC5-ECB: KEY AND DATA LENGTH ....coocoiiiiiiiiieieeeeeeeeeieeeeeeee e 265
TABLE 81, RC5-CBC: KEY AND DATA LENGTH.....couuuiiiiiiiiiiiieee et 266
TABLE 82, RC5-CBC WITH PKCS PADDING: KEY AND DATA LENGTH .......ccccccuvvveeeen.... 267
TABLE 83, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH ....ccovveeeeeeennrrnnnnn.... 267
TABLE 84, RC5-MAC: KEY AND DATA LENGTH.......coooiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee, 268
TABLE 85, AES SECRET KEY OBJECT ATTRIBUTES....uuuutiiiiiiiiiiiieeeeeeeeeeeiiieeeeeeeeeeesnnnnns 269
TABLE 86, AES-ECB: KEY AND DATA LENGTH.....cccccooiiiiiiiiiiieeee et 270
TABLE 87, AES-CBC: KEY AND DATA LENGTH....cc..cooiiiiiiiieieeeee ettt 271
TABLE 88, AES-CBC wITH PKCS PADDING: KEY AND DATA LENGTH.........cccooeuvvuenn.... 272

June 2004 Copyright © 2004 RSA Security Inc.



Xiv PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

TABLE 89, GENERAL-LENGTH AES-MAC: KEY AND DATA LENGTH ....ccevveeeeeiinrreennn.. 273
TABLE 90, AES-MAC: KEY AND DATA LENGTH ......coooimiiiiiiieiee e e 273
TABLE 91, DES SECRET KEY OBIECT ...cotttttiiiiiieieeieieee ettt e e e ee e e e e e eeeeasannnns 275
TABLE 92, CAST SECRET KEY OBJECT ATTRIBUTES .......uuvviiiieeeeeeeicirnreeeeeeeeeeecnrreeeeeenns 276
TABLE 93, CAST3 SECRET KEY OBJECT ATTRIBUTES ......uuvvviiieeeeeeeiiiinreeeeeeeeeeeinrreeeneens 277
TABLE 94, CAST128 (CASTS) SECRET KEY OBJECT ATTRIBUTES .....ccecvveeevieenireeennenns 277
TABLE 95, IDEA SECRET KEY OBIECT ..covuuuuiiiiiiiiiieiieee e eeeeeeeteeee e e e e eeeeaaae e e e e e eeeeasnnnnns 278
TABLE 96, CDMF SECRET KEY OBJIECT......ccoitiitttiieeeeeeeeeciiteeeeeeeeeeectirreeeeeeeeeeeenvvnreeea s 279
TABLE 97, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH......cc..ccoovvvunrrnnnnn.... 281
TABLE 98, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTH......cccccoovvvvnrrnnnnnn... 282

TABLE 99, GENERAL BLOCK CIPHER CBC WITH PKCS PADDING: KEY AND DATA LENGTH283
TABLE 100, GENERAL-LENGTH GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH284

TABLE 101, GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH .......ccccoovuvvueen.... 284
TABLE 102, MECHANISM PARAMETERS .......ccoittttreeiieeeeiieiiiieeeeeeeeeeeeeirereeeeeeeeesenansnneeeeeees 285
TABLE 103, DES2 SECRET KEY OBJECT ATTRIBUTES....uuiiiiiiiitiiieeeeeeeeeeeeiiee e e e eeeeeaeannnns 287
TABLE 104, DES3 SECRET KEY OBJECT ATTRIBUTES.......ccvvviiieieeeeeiciirreeeeeeeeeeecnrveeeeeeans 288
TABLE 105, OFB: KEY AND DATA LENGTH......cuvvviiiiiiiiieiiiieeeeeee e eeeeeevveeeee e 290
TABLE 106, CFB: KEY AND DATA LENGTH......cuuvvviiiiiiiiiiiiiieieeeee e eeeeeeivrneeee e 291
TABLE 107, SKIPJACK SECRET KEY OBIECT ....ccovviiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 292
TABLE 108, SKIPJACK-ECB64: DATA AND LENGTH ......cuvvviiieieeiieiiiiieeeeee e 296
TABLE 109, SKIPJACK-CBC64: DATA AND LENGTH ......cuvvviiiiieeeieiciinreeeeeeeeeeeevreeeeeee 296
TABLE 110, SKIPJACK-OFB64: DATA AND LENGTH .....ouvvvvviiiieeiieiiiereeeee e 297
TABLE 111, SKIPJACK-CFB64: DATA AND LENGTH ....cooiiiiiiiieeee e 297
TABLE 112, SKIPJACK-CFB32: DATA AND LENGTH .....ccuvvviiieieeiieiciiiieeeeee e 298
TABLE 113, SKIPJACK-CFB16: DATA AND LENGTH .....cuvvvviiiiieeeieiiinreeeeeeeeeeeevreeeeeee 298
TABLE 114, SKIPJACK-CFB8: DATA AND LENGTH .....ccoovvveiiiieeiieiiiireeeeee e 299
TABLE 115, BATON SECRET KEY OBJIECT ...ccoovviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 300
TABLE 116, BATON-ECB128: DATA AND LENGTH .......ccovviiiiiieeeeecciiiieeeee e 302
TABLE 117, BATON-ECB96: DATA AND LENGTH ......coooiiiiiiiieeeceeecciereeeee e 302
TABLE 118, BATON-CBC128: DATA AND LENGTH......cooovvviiiiieeiieiiiieeeeee e 303
TABLE 119, BATON-COUNTER: DATA AND LENGTH ......coovvviiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeee 303
TABLE 120, BATON-SHUFFLE: DATA AND LENGTH........ovuvviiiiiiiiiciiiieeeeee e 304
TABLE 121, JUNIPER SECRET KEY OBJIECT ....uuuvvieiieiieiieiiireeeeeeeeeeeeeiinreeeeeeeeeeesarnneeeeeees 304
TABLE 122, JUNIPER-ECB128: DATA AND LENGTH......cccvvvviiiiieeiieiiiieeeeeee e 306
TABLE 123, JUNIPER-CBC128: DATA AND LENGTH.....ccoiiiiiiiiieeee et 307
TABLE 124, JUNIPER-COUNTER: DATA AND LENGTH.......ccceviiiiiiiciiirieeeeeeeeeecivveeeenen. 307
TABLE 125, JUNIPER-SHUFFLE: DATA AND LENGTH .....ovvvviiiiiiiiiiiinreeeeeeeeeeeevveeeeeee. 307
TABLE 126, MD2: DATA LENGTH ....uvvvviiiiiiiiiiiiieeeeeeeeeeeettieeeee e e eeeettaree e e e e e e eeanraneeee e 308
TABLE 127, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTH ....ceeeeevvvevvnnnnen. 309
TABLE 128, MD5: DATALENGTH ....ccoooiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee 311
TABLE 129, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTH ......ccccovuvveeen.... 311
TABLE 130, SHA-1: DATA LENGTH ...covveiiiiiiiiieeeeeeee e eeeeetaree e eeaaaneeee e 313
TABLE 131, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH.........ccccevvun... 313
TABLE 132, SHA-256: DATA LENGTH ...coooiiiiiiiiiieeee ettt vvneeee e 315
TABLE 133, GENERAL-LENGTH SHA-256-HMAC: KEY AND DATA LENGTH.................. 316
TABLE 134, SHA-384: DATA LENGTH ....ccooiiiiiiiiieeeiee e eeeeetaree e e eenaaneeee e 317

Copyright © 2004 RSA Security Inc. June 2004



XV

TABLE 135, SHA-512: DATA LENGTH ...coooiiiiiiiiiieeeie ettt eeeeearee e eeeeeraneeee e 318
TABLE 136, FASTHASH: DATA LENGTH .....cccouvvvvieiiiiiiiieiiieeeeee et 319
TABLE 137, PKCS #5 PBKDF2 KEY GENERATION: PSEUDO-RANDOM FUNCTIONS......... 323
TABLE 138, PKCS #5 PBKDF2 KEY GENERATION: SALT SOURCES......cccvveeeeeeeinrvreennn.. 323
TABLE 139, RIPE-MD 128: DATA LENGTH .....cuvvviiiiiiieiieiiieeeeeeeeeeeeeinreeeeeeeeeeeevvneeeeaees 329
TABLE 140, GENERAL-LENGTH RIPE-MD 128-HMAC: ......ovvvviiiiiiiiieeeeeeeeeeeveeeee. 330
TABLE 141, RIPE-MD 160: DATA LENGTH ..ottt 330
TABLE 142, GENERAL-LENGTH RIPE-MD 160-HMAC: .......coooviiiiiiieeeeeeeeereeee. 331
TABLE 143, MD5 MACING IN SSL 3.0: KEY AND DATA LENGTH .....ovvvveeeeeeeeiirrneenn.. 340
TABLE 144, SHA-1 MACING IN SSL 3.0: KEY AND DATA LENGTH.......ccoocoovivmvnrrnnnnnn... 341
TABLE 145, CMS SIGNATURE MECHANISM OBJECT ATTRIBUTES.......cotttttiieeeeeeeeeeeiinnnnn. 364
TABLE 146, BLOWFISH SECRET KEY OBJECT.....ccoiiiiiiiiiiiiieeeeeeeeeeeciiireee e eeeeeevveeeeee e 368
TABLE 147, TWOFISH SECRET KEY OBJECT ....uuvtvvieiieeieiiiiiiieeeeeeeeeeeeeiinneeeeeeeeeeesnsnneeneaees 370

June 2004 Copyright © 2004 RSA Security Inc.






1. INTRODUCTION 1

1 Introduction

As cryptography begins to see wide application and acceptance, one thing is increasingly
clear: if it is going to be as effective as the underlying technology allows it to be, there
must be interoperable standards. Even though vendors may agree on the basic
cryptographic techniques, compatibility between implementations is by no means
guaranteed. Interoperability requires strict adherence to agreed-upon standards.

Towards that goal, RSA Laboratories has developed, in cooperation with representatives
of industry, academia and government, a family of standards called Public-Key
Cryptography Standards, or PKCS for short.

PKCS is offered by RSA Laboratories to developers of computer systems employing
public-key and related technology. It is RSA Laboratories' intention to improve and
refine the standards in conjunction with computer system developers, with the goal of
producing standards that most if not all developers adopt.

The role of RSA Laboratories in the standards-making process is four-fold:
1. Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or
necessary changes and extensions.

3. Publish revised standards when appropriate.
4. Provide implementation guides and/or reference implementations.

During the process of PKCS development, RSA Laboratories retains final authority on
each document, though input from reviewers is clearly influential. However, RSA
Laboratories’ goal is to accelerate the development of formal standards, not to compete
with such work. Thus, when a PKCS document is accepted as a base document for a
formal standard, RSA Laboratories relinquishes its “ownership” of the document, giving
way to the open standards development process. RSA Laboratories may continue to
develop related documents, of course, under the terms described above.

PKCS documents and information are available online at
http://ww. rsasecurity.com rsal abs/ PKCS/. There is an electronic
mailing list, “crypt oki ”, at rsasecurity. com specifically for discussion and
development of PKCS #I1. To subscribe to this list, send e-mail to
maj or dono@r sasecurity. comwith the line “subscri be cryptoki” in the
message body. To unsubscribe, send e-mail to maj or dono@r sasecurity. com
with the line “unsubscri be crypt oki ” in the message body.

Comments on the PKCS documents, requests to register extensions to the standards, and
suggestions for additional standards are welcomed. Address correspondence to:

June 2004 Copyright © 2004 RSA Security Inc.



2 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PKCS Editor
RSA Laboratories
174 M ddl esex Turnpi ke

Bedford, MA 01730 USA
pkcs-editor @sasecurity.com
http://ww. rsasecurity. comrsal abs/ PKCS/

It would be difficult to enumerate all the people and organizations who helped to produce
PKCS #11. RSA Laboratories is grateful to each and every one of them. Special thanks
go to Bruno Couillard of Chrysalis-ITS and John Centafont of NSA for the many hours
they spent writing up parts of this document. Thanks also for the many other technical
descriptions provided by many industry specialists. The reviewers of the document,
without whose help the quality of the content would not be as great, must also be
acknowledged and thanked. The review effort cannot be underestimated especially for a
document so large.

For Version 1.0, PKCS #11’s document editor was Aram Pérez of International
Computer Services, under contract to RSA Laboratories; the project coordinator was Burt
Kaliski of RSA Laboratories. For Version 2.01, Ray Sidney served as document editor
and project coordinator. Matthew Wood of Intel was document editor and project
coordinator for Version 2.10 and Version 2.11. Simon McMahon from Eracom was
editor for Version 2.20 while Magnus Nystrom of RSA coordinated the project.

2 Scope

This standard specifies an application programming interface (API), called “Cryptoki,” to
devices which hold cryptographic information and perform cryptographic functions.
Cryptoki, pronounced “crypto-key” and short for “cryptographic token interface,”
follows a simple object-based approach, addressing the goals of technology
independence (any kind of device) and resource sharing (multiple applications accessing
multiple devices), presenting to applications a common, logical view of the device called
a “cryptographic token”.

This document specifies the data types and functions available to an application requiring
cryptographic services using the ANSI C programming language. These data types and
functions will typically be provided via C header files by the supplier of a Cryptoki
library. Generic ANSI C header files for Cryptoki are available from the PKCS Web
page. This document and up-to-date errata for Cryptoki will also be available from the
same place.

Additional documents may provide a generic, language-independent Cryptoki interface
and/or bindings between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The
application does not have to change to interface to a different type of device or to run in a
different environment; thus, the application is portable. How Cryptoki provides this

Copyright © 2004 RSA Security Inc. June 2004



3. REFERENCES 3

isolation is beyond the scope of this document, although some conventions for the
support of multiple types of device will be addressed here and possibly in a separate
document.

A number of cryptographic mechanisms (algorithms) are supported in this version. In
addition, new mechanisms can be added later without changing the general interface. It
is possible that additional mechanisms will be published from time to time in separate
documents; it is also possible for token vendors to define their own mechanisms
(although, for the sake of interoperability, registration through the PKCS process is
preferable).

Cryptoki is intended for cryptographic devices associated with a single user, so some
features that might be included in a general-purpose interface are omitted. For example,
Cryptoki does not have a means of distinguishing multiple users. The focus is on a single
user’s keys and perhaps a small number of certificates related to them. Moreover, the
emphasis is on cryptography. While the device may perform useful non-cryptographic
functions, such functions are left to other interfaces.

3 References
ANSIC ANSV/ISO. American National Standard for Programming Languages
—C. 1990.

ANSI X9.31 Accredited Standards Committee X9. Digital Signatures Using
Reversible Public Key Cryptography for the Financial Services
Industry (rDSA). 1998.

ANSI X9.42 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography. 2003.

ANSI X9.62 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA). 1998.

ANSI X9.63 Accredited Standards Committee X9. Public Key Cryptography for
the Financial Services Industry: Key Agreement and Key Transport
Using Elliptic Curve Cryptography. 2001.

CC/PP W3C. Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies. World Wide Web Consortium, January 2004. URL:
http://www.w3.org/TR/CCPP-struct-vocab/

CDPD Ameritech Mobile Communications et al. Cellular Digital Packet
Data System Specifications: Part 406: Airlink Security. 1993.

FIPS PUB 46-3 NIST. FIPS 46-3: Data Encryption Standard (DES). October 25,
1999. URL.: http://csrc.nist.gov/publications/fips/index.html

June 2004 Copyright © 2004 RSA Security Inc.



FIPS PUB 74

FIPS PUB 81

FIPS PUB 113

FIPS PUB 180-2

FIPS PUB 186-2

FIPS PUB 197

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

NIST. FIPS 74: Guidelines for Implementing and Using the NBS Data
Encryption Standard. April I, 1981. URL:
http://csrc.nist.gov/publications/fips/index.html

NIST. FIPS 81: DES Modes of Operation. December 1980. URL:
http://csre.nist.gov/publications/fips/index.html

NIST. FIPS 113: Computer Data Authentication. May 30, 1985.
URL: http://csrc.nist.gov/publications/fips/index.html

NIST. FIPS 180-2: Secure Hash Standard. August 1, 2002. URL:
http://csre.nist.gov/publications/fips/index.html

NIST. FIPS 186-2: Digital Signature Standard. January 27, 2000.
URL: http://csrc.nist.gov/publications/fips/index.html

NIST. FIPS 197: Advanced Encryption Standard (AES). November
26, 2001. URL: http://csrc.nist.gov/publications/fips/index.html

FORTEZZA CIPG  NSA, Workstation Security Products. FORTEZZA Cryptologic

GCS-API

ISO/IEC 7816-1

ISO/IEC 7816-4

ISO/IEC 8824-1

ISO/IEC 8825-1

ISO/IEC 9594-1

ISO/IEC 9594-8

ISO/IEC 9796-2

Java MIDP

MeT-PTD

Interface Programmers Guide, Revision 1.52. November 1995.

X/Open Company Ltd. Generic Cryptographic Service API (GCS-
API), Base - Draft 2. February 14, 1995.

ISO. Information Technology — Identification Cards — Integrated
Circuit(s) with Contacts — Part 1: Physical Characteristics. 1998.

ISO. Information Technology — Identification Cards — Integrated
Circuit(s) with Contacts — Part 4: Interindustry Commands for
Interchange. 1995.

ISO. Information Technology-- Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. 2002.

ISO. Information Technology—ASN.1 Encoding Rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),
and Distinguished Encoding Rules (DER). 2002.

ISO. Information Technology — Open Systems Interconnection — The
Directory.: Overview of Concepts, Models and Services. 2001.

ISO. Information Technology — Open Systems Interconnection — The
Directory: Public-key and Attribute Certificate Frameworks. 2001.

ISO.  Information Technology — Security Techniques — Digital
Signature Scheme Giving Message Recovery — Part 2: Integer
factorization based mechanisms. 2002.

Java Community Process. Mobile Information Device Profile for Java
2 Micro Edition. November 2002. URL:
http://jcp.org/jsr/detail/118.jsp

MeT. MeT PTD Definition — Personal Trusted Device Definition,
Version 1.0, February 2003. URL: http://www.mobiletransaction.org

Copyright © 2004 RSA Security Inc. June 2004



3. REFERENCES

PCMCIA

PKCS #1

PKCS #3

PKCS #5

PKCS #7

PKCS #8

PKCS #11-C

PKCS #11-P

PKCS #12

RFC 1319

RFC 1321

RFC 1421

RFC 2045

RFC 2246

RFC 2279

June 2004

Personal Computer Memory Card International Association. PC Card
Standard, Release 2.1,. July 1993.

RSA Laboratories. RSA Cryptography Standard. v2.1, June 14, 2002.
URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

RSA Laboratories. Diffie-Hellman Key-Agreement Standard. v1.4,
November 1993. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
3/index.html

RSA Laboratories. Password-Based Encryption Standard. v2.0,
March 25, 1999. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
5/index.html

RSA Laboratories. Cryptographic Message Syntax Standard. v1.5,
November 1993. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
7/index.html

RSA Laboratories. Private-Key Information Syntax Standard. v1.2,
November 1993. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
8/index.html

RSA Laboratories. PKCS #11: Conformance Profile Specification,
October 2000. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
11/index.html

RSA Laboratories. PKCS #11 Profiles for mobile devices, June 2003.
URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/index.html

RSA Laboratories. Personal Information Exchange Syntax Standard.
v1.0, June 1999. URL: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
12/index.html

B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. RSA
Laboratories, April 1992. URL: http://ietf.org/rfc/rfc1319.txt

R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT
Laboratory for Computer Science and RSA Data Security, Inc., April
1992. URL: http://ietf.org/rfc/rfc1321.txt

J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication Procedures.
IAB IRTF PSRG, IETF PEM WG, February 1993. URL:
http://ietf.org/rfc/rfc1421.txt

Freed, N., and N. Borenstein. RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies.
November 1996. URL: http://ietf.org/rfc/rfc2045.txt

T. Dierks & C. Allen. RFC 2246: The TLS Protocol Version 1.0.
Certicom, January 1999. URL: http://ietf.org/rfc/rfc2246.txt

F. Yergeau. RFC 2279: UTF-8, a transformation format of ISO 10646
Alis Technologies, January 1998. URL: http://ietf.org/rfc/rfc2279.txt

Copyright © 2004 RSA Security Inc.



RFC 2534

RFC 2630

RFC 2743

RFC 2744

SEC 1

SEC 2

TLS

WIM

WPKI

WTLS

X.500

X.509

X.680

X.690

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Masinter, L., Wing, D., Mutz, A., and K. Holtman. RFC 2534: Media
Features for Display, Print, and Fax. March 1999. URL:
http://ietf.org/rfc/rfc2534.txt

R. Housley. RFC 2630: Cryptographic Message Syntax. June 1999.
URL: http://ietf.org/rfc/rfc2630.txt

J. Linn. RFC 2743: Generic Security Service Application Program
Interface Version 2, Update 1. RSA Laboratories, January 2000.
URL: http://ietf.org/rfc/rfc2743.txt

J. Wray. RFC 2744: Generic Security Services API Version 2: C-
bindings. Iris Associates, January 2000. URL:
http://ietf.org/rfc/rfc2744.txt

Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography.
Version 1.0, September 20, 2000.

Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 2: Recommended Elliptic Curve
Domain Parameters. Version 1.0, September 20, 2000.

IETF. RFC 2246: The TLS Protocol Version 1.0 . January 1999. URL:
http://ietf.org/rfc/rfc2246.txt

WAP. Wireless Identity Module. — WAP-260-WIM-20010712-a. July
2001. URL: http://www.wapforum.org/

WAP. Wireless PKI. — WAP-217-WPKI-20010424-a. April 2001.
URL: http://www.wapforum.org/

WAP. Wireless Transport Layer Security Version — WAP-261-WTLS-
20010406-a. April 2001. URL: http://www.wapforum.org/.

ITU-T. Information Technology — Open Systems Interconnection —
The Directory.: Overview of Concepts, Models and Services. February
2001.

Identical to ISO/IEC 9594-1

ITU-T. Information Technology — Open Systems Interconnection —
The Directory: Public-key and Attribute Certificate Frameworks.
March 2000.

Identical to ISO/IEC 9594-8

ITU-T. Information Technology — Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation. July 2002.
Identical to ISO/IEC 8824-1

ITU-T. [Information Technology — ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER), and Distinguished Encoding Rules (DER). July 2002.
Identical to ISO/IEC 8825-1

Copyright © 2004 RSA Security Inc. June 2004



4. DEFINITIONS

4 Definitions

For the purposes of this standard, the following definitions apply:

API
Application

ASN.1
Attribute
BATON
BER
CAST

CAST3

CASTS

CAST128

CBC

CDMF

Certificate

CMS
Cryptographic Device

Cryptoki

Cryptoki library

DER

June 2004

Application programming interface.

Any computer program that calls the Cryptoki
interface.

Abstract Syntax Notation One, as defined in X.680.
A characteristic of an object.

MISSI’s BATON block cipher.

Basic Encoding Rules, as defined in X.690.

Entrust Technologies’ proprietary symmetric block
cipher.

Entrust Technologies’ proprietary symmetric block
cipher.

Another name for Entrust Technologies’ symmetric
block cipher CAST128. CAST128 is the preferred
name.

Entrust Technologies’ symmetric block cipher.

Cipher-Block Chaining mode, as defined in FIPS PUB
81.

Commercial Data Masking Facility, a block
encipherment method specified by International
Business Machines Corporation and based on DES.

A signed message binding a subject name and a public
key, or a subject name and a set of attributes.

Cryptographic Message Syntax (see RFC 2630)

A device storing cryptographic information and
possibly performing cryptographic functions. May be
implemented as a smart card, smart disk, PCMCIA
card, or with some other technology, including
software-only.

The Cryptographic Token Interface defined in this
standard.

A library that implements the functions specified in
this standard.

Distinguished Encoding Rules, as defined in X.690.

Copyright © 2004 RSA Security Inc.



PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

DES

DSA

EC
ECB

ECDH
ECDSA
ECMQV
FASTHASH
IDEA

v
JUNIPER
KEA
LYNKS
MAC

MD2

MDS5

Mechanism
MQV
OAEP
Object

PIN
PKCS
PRF
PTD
RSA
RC2
RC4

Copyright © 2004 RSA Security Inc.

Data Encryption Standard, as defined in FIPS PUB 46-
3.

Digital Signature Algorithm, as defined in FIPS PUB
186-2.

Elliptic Curve

Electronic Codebook mode, as defined in FIPS PUB
81.

Elliptic Curve Diffie-Hellman.

Elliptic Curve DSA, as in ANSI X9.62.

Elliptic Curve Menezes-Qu-Vanstone

MISSI’s FASTHASH message-digesting algorithm.
Ascom Systec’s symmetric block cipher.
Initialization Vector.

MISSI’s JUNIPER block cipher.

MISSI’s Key Exchange Algorithm.

A smart card manufactured by SPYRUS.

Message Authentication Code.

RSA Security's MD2 message-digest algorithm, as
defined in RFC 1319.

RSA Security's MD5 message-digest algorithm, as
defined in RFC 1321.

A process for implementing a cryptographic operation.
Menezes-Qu-Vanstone
Optimal Asymmetric Encryption Padding for RSA.

An item that is stored on a token. May be data, a
certificate, or a key.

Personal Identification Number.

Public-Key Cryptography Standards.

Pseudo random function.

Personal Trusted Device, as defined in MeT-PTD
The RSA public-key cryptosystem.

RSA Security’s RC2 symmetric block cipher.

RSA Security’s proprietary RC4 symmetric stream
cipher.

June 2004



4. DEFINITIONS

RC5
Reader

Session

SET
SHA-1

SHA-256

SHA-384

SHA-512

Slot
SKIPJACK
SSL

Subject Name

SO
TLS
Token

User

UTF-8

WIM
WTLS

June 2004

RSA Security’s RC5 symmetric block cipher.

The means by which information is exchanged with a
device.

A logical connection between an application and a
token.

The Secure Electronic Transaction protocol.

The (revised) Secure Hash Algorithm with a 160-bit
message digest, as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 256-bit message
digest, as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 384-bit message
digest, as defined in FIPS PUB 180-2.

The Secure Hash Algorithm with a 512-bit message
digest, as defined in FIPS PUB 180-2.

A logical reader that potentially contains a token.
MISSI’s SKIPJACK block cipher.
The Secure Sockets Layer 3.0 protocol.

The X.500 distinguished name of the entity to which a
key is assigned.

A Security Officer user.
Transport Layer Security.

The logical view of a cryptographic device defined by
Cryptoki.

The person using an application that interfaces to
Cryptoki.

Universal Character Set (UCS) transformation format
(UTF) that represents ISO 10646 and UNICODE
strings with a variable number of octets.

Wireless Identification Module.

Wireless Transport Layer Security.

Copyright © 2004 RSA Security Inc.



10 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

5 Symbols and abbreviations

The following symbols are used in this standard:

Table 1, Symbols

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes
Prefix | Description
C_ Function
CK Data type or general constant

CKA | Attribute

CKC_ | Certificate type

CKD | Key derivation function
CKF Bit flag

CKG_ | Mask generation function

CKH_ | Hardware feature type
CKK | Key type

CKM | Mechanism type

CKN_ | Notification

CKO _ | Object class

CKP_ | Pseudo-random function
CKS Session state

CKR_ | Return value

CKU_ | User type

CKZ | Salt/Encoding parameter source
h a handle

ul a CK_ULONG

p a pointer

pb a pointer to a CK_ BYTE
ph a pointer to a handle

pul a pointer to a CK_ULONG

Copyright © 2004 RSA Security Inc.

June 2004



5. SYMBOLS AND ABBREVIATIONS 11

Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */
t ypedef unsigned char CK BYTE;

/* an unsigned 8-bit character */
t ypedef CK BYTE CK CHAR;

/* an 8-bit UTF-8 character */
t ypedef CK BYTE CK _UTF8CHAR,

/* a BYTE-sized Boolean flag */
t ypedef CK BYTE CK BBOOL;

/* an unsigned value, at least 32 bits long */
t ypedef unsigned |long int CK _ULONG

/* a signed value, the sane size as a CK_ULONG */
typedef long int CK _LONG

/* at least 32 bits; each bit is a Boolean flag */
t ypedef CK _ULONG CK_FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type voi d,
which are implementation-dependent. These pointer types are:

CK_BYTE_PTR /* Pointer to a CK BYTE */
CK_CHAR _PTR /* Pointer to a CK CHAR */
CK_UTF8CHAR PTR /* Pointer to a CK_UTF8CHAR */
CK_ULONG PTR /* Pointer to a CK _ULONG */
CK_ vO D _PTR /[* Pointer to a void */

Cryptoki also defines a pointer to a CK VOID PTR, which is implementation-
dependent:

CK_ VO D PTR PTR /* Pointer to a CK VO D PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid
pointer:

NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one
environment to another (e.g., a CK_ULONG will sometimes be 32 bits, and sometimes
perhaps 64 bits). However, these details should not affect an application, assuming it is
compiled with Cryptoki header files consistent with the Cryptoki library to which the
application is linked.

June 2004 Copyright © 2004 RSA Security Inc.



12 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD
All numbers and values expressed in this document are decimal, unless they are preceded
by “0x”, in which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from ANSI
C:

Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXY?Z
abcdefghijklmnopqrstuvwxyz

Numbers 0123456789

Graphic characters | ! “#% & () *+,-./:;<=>2[\]" _{]|}~

Blank character ¢

The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified
in RFC2279. UTF-8 allows internationalization while maintaining backward
compatibility with the Local String definition of PKCS #11 version 2.01.

In Cryptoki, the CK_BBOOL data type is a Boolean type that can be true or false. A
zero value means false, and a nonzero value means true. Similarly, an individual bit flag,
CKEF ..., can also be set (true) or unset (false). For convenience, Cryptoki defines the
following macros for use with values of type CK_BBOOL:

#defi ne CK_FALSE O
#define CK_ TRUE 1

For backwards compatibility, header files for this version of Cryptoki also defines TRUE
and FALSE as (CK_DI SABLE_TRUE_FALSE may be set by the application vendor):

#i f ndef CK DI SABLE TRUE FALSE
#i f ndef FALSE

#defi ne FALSE CK FALSE

#endi f

#i f ndef TRUE
#defi ne TRUE CK_TRUE

#endi f
#endi f

6 General overview
6.1 Introduction

Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are
ideal tools for implementing public-key cryptography, as they provide a way to store the

Copyright © 2004 RSA Security Inc. June 2004



6. GENERAL OVERVIEW 13

private-key component of a public-key/private-key pair securely, under the control of a
single user. With such a device, a cryptographic application, rather than performing
cryptographic operations itself, utilizes the device to perform the operations, with
sensitive information such as private keys never being revealed. As more applications
are developed for public-key cryptography, a standard programming interface for these
devices becomes increasingly valuable. This standard addresses this need.

6.2  Design goals

Cryptoki was intended from the beginning to be an interface between applications and all
kinds of portable cryptographic devices, such as those based on smart cards, PCMCIA
cards, and smart diskettes. There are already standards (de facto or official) for
interfacing to these devices at some level. For instance, the mechanical characteristics
and electrical connections are well-defined, as are the methods for supplying commands
and receiving results. (See, for example, ISO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It
would not be enough simply to define command sets for each kind of device, as that
would not solve the general problem of an application interface independent of the
device. To do so is still a long-term goal, and would certainly contribute to
interoperability. The primary goal of Cryptoki was a lower-level programming interface
that abstracts the details of the devices, and presents to the application a common model
of the cryptographic device, called a “cryptographic token” (or simply “token”).

A secondary goal was resource-sharing. As desktop multi-tasking operating systems
become more popular, a single device should be shared between more than one
application. In addition, an application should be able to interface to more than one
device at a given time.

It is not the goal of Cryptoki to be a generic interface to cryptographic operations or
security services, although one certainly could build such operations and services with
the functions that Cryptoki provides. Cryptoki is intended to complement, not compete
with, such emerging and evolving interfaces as “Generic Security Services Application
Programming Interface” (RFC 2743 and RFC 2744) and “Generic Cryptographic Service
API” (GCS-API) from X/Open.

6.3 General model

Cryptoki's general model is illustrated in the following figure. The model begins with one
or more applications that need to perform certain cryptographic operations, and ends with
one or more cryptographic devices, on which some or all of the operations are actually
performed. A user may or may not be associated with an application.

June 2004 Copyright © 2004 RSA Security Inc.



14

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Application 1

Application k

v

Other Security Layers

v

Other Security Layers

v

v

Crvptoki

Cryvptoki

\_l

l_l

Device Contention/Synchronization

l_l

\_l

Slot 1 Slot n
Token 1 Token n
(Device 1) (Device n)

Figure 1, General Cryptoki Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the
system through a number of “slots”. Each slot, which corresponds to a physical reader or
other device interface, may contain a token. A token is typically “present in the slot”
when a cryptographic device is present in the reader. Of course, since Cryptoki provides
a logical view of slots and tokens, there may be other physical interpretations. It is
possible that multiple slots may share the same physical reader. The point is that a
system has some number of slots, and applications can connect to tokens in any or all of
those slots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typically passed through standard device drivers, for
instance PCMCIA card services or socket services. Cryptoki makes each cryptographic
device look logically like every other device, regardless of the implementation
technology. Thus the application need not interface directly to the device drivers (or
even know which ones are involved); Cryptoki hides these details. Indeed, the
underlying “device” may be implemented entirely in software (for instance, as a process
running on a server)—no special hardware is necessary.

Cryptoki is likely to be implemented as a library supporting the functions in the interface,
and applications will be linked to the library. An application may be linked to Cryptoki
directly; alternatively, Cryptoki can be a so-called “shared” library (or dynamic link

Copyright © 2004 RSA Security Inc. June 2004



6. GENERAL OVERVIEW 15

library), in which case the application would link the library dynamically. Shared
libraries are fairly straightforward to produce in operating systems such as Microsoft
Windows and OS/2, and can be achieved without too much difficulty in UNIX and DOS
systems.

The dynamic approach certainly has advantages as new libraries are made available, but
from a security perspective, there are some drawbacks. In particular, if a library is easily
replaced, then there is the possibility that an attacker can substitute a rogue library that
intercepts a user’s PIN. From a security perspective, therefore, direct linking is generally
preferable, although code-signing techniques can prevent many of the security risks of
dynamic linking. In any case, whether the linking is direct or dynamic, the programming
interface between the application and a Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular Cryptoki
library. This standard specifies only the interface to the library, not its features. In
particular, not all libraries will support all the mechanisms (algorithms) defined in this
interface (since not all tokens are expected to support all the mechanisms), and libraries
will likely support only a subset of all the kinds of cryptographic devices that are
available. (The more kinds, the better, of course, and it is anticipated that libraries will
be developed supporting multiple kinds of token, rather than just those from a single
vendor.) It is expected that as applications are developed that interface to Cryptoki,
standard library and token “profiles” will emerge.

6.4  Logical view of a token

Cryptoki’s logical view of a token is a device that stores objects and can perform
cryptographic functions. Cryptoki defines three classes of object: data, certificates, and
keys. A data object is defined by an application. A certificate object stores a certificate. A
key object stores a cryptographic key. The key may be a public key, a private key, or a
secret key; each of these types of keys has subtypes for use in specific mechanisms. This
view is illustrated in the following figure:

Object

Data Key Certificate

Public Key Private Key Secret Key

Figure 2, Object Hierarchy

June 2004 Copyright © 2004 RSA Security Inc.



16 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Objects are also classified according to their lifetime and visibility. “Token objects” are
visible to all applications connected to the token that have sufficient permission, and
remain on the token even after the “sessions” (connections between an application and
the token) are closed and the token is removed from its slot. “Session objects” are more
temporary: whenever a session is closed by any means, all session objects created by that
session are automatically destroyed. In addition, session objects are only visible to the
application which created them.

Further classification defines access requirements. Applications are not required to log
into the token to view “public objects”; however, to view “private objects”, a user must
be authenticated to the token by a PIN or some other token-dependent method (for
example, a biometric device).

See Table 6 on page 22 for further clarification on access to objects.

A token can create and destroy objects, manipulate them, and search for them. It can also
perform cryptographic functions with objects. A token may have an internal random
number generator.

It is important to distinguish between the logical view of a token and the actual
implementation, because not all cryptographic devices will have this concept of
“objects,” or be able to perform every kind of cryptographic function. Many devices will
simply have fixed storage places for keys of a fixed algorithm, and be able to do a limited
set of operations. Cryptoki's role is to translate this into the logical view, mapping
attributes to fixed storage elements and so on. Not all Cryptoki libraries and tokens need
to support every object type. It is expected that standard “profiles” will be developed,
specifying sets of algorithms to be supported.

“Attributes” are characteristics that distinguish an instance of an object. In Cryptoki,
there are general attributes, such as whether the object is private or public. There are also
attributes that are specific to a particular type of object, such as a modulus or exponent
for RSA keys.

6.5 Users

This version of Cryptoki recognizes two token user types. One type is a Security Officer
(SO). The other type is the normal user. Only the normal user is allowed access to
private objects on the token, and that access is granted only after the normal user has
been authenticated. Some tokens may also require that a user be authenticated before any
cryptographic function can be performed on the token, whether or not it involves private
objects. The role of the SO is to initialize a token and to set the normal user’s PIN (or
otherwise define, by some method outside the scope of this version of Cryptoki, how the
normal user may be authenticated), and possibly to manipulate some public objects. The
normal user cannot log in until the SO has set the normal user’s PIN.

Copyright © 2004 RSA Security Inc. June 2004



6. GENERAL OVERVIEW 17

Other than the support for two types of user, Cryptoki does not address the relationship
between the SO and a community of users. In particular, the SO and the normal user may
be the same person or may be different, but such matters are outside the scope of this
standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that
they are variable-length strings of characters from the set in Table 3. Any translation to
the device’s requirements is left to the Cryptoki library. The following issues are beyond
the scope of Cryptoki:

* Any padding of PINS.

* How the PINs are generated (by the user, by the application, or by some other
means).

PINs that are supplied by some means other than through an application (e.g., PINs
entered via a PINpad on the token) are even more abstract. Cryptoki knows how to wait
(if need be) for such a PIN to be supplied and used, and little more.

6.6  Applications and their use of Cryptoki

To Cryptoki, an application consists of a single address space and all the threads of
control running in it. An application becomes a “Cryptoki application” by calling the
Cryptoki function C_Initialize (see Section 11.4) from one of its threads; after this call is
made, the application can call other Cryptoki functions. When the application is done
using Cryptoki, it calls the Cryptoki function C_Finalize (see Section 11.4) and ceases to
be a Cryptoki application.

6.6.1 Applications and processes

In general, on most platforms, the previous paragraph means that an application consists
of a single process.

Consider a UNIX process P which becomes a Cryptoki application by calling
C_Initialize, and then uses the f or k() system call to create a child process C. Since P
and C have separate address spaces (or will when one of them performs a write
operation, if the operating system follows the copy-on-write paradigm), they are not part
of the same application. Therefore, if C needs to use Cryptoki, it needs to perform its
own C_Initialize call. Furthermore, if C needs to be logged into the token(s) that it will
access via Cryptoki, it needs to log into them even if P already logged in, since P and C
are completely separate applications.

In this particular case (when C is the child of a process which is a Cryptoki application),
the behavior of Cryptoki is undefined if C tries to use it without its own C_Initialize call.
Ideally, such an attempt would return the value CKR_CRYPTOKI NOT INITIALIZED;
however, because of the way f or k() works, insisting on this return value might have a

June 2004 Copyright © 2004 RSA Security Inc.



18 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

bad impact on the performance of libraries. Therefore, the behavior of Cryptoki in this
situation is left undefined. Applications should definitely not attempt to take advantage
of any potential “shortcuts” which might (or might not!) be available because of this.

In the scenario specified above, C should actually call C_Initialize whether or not it
needs to use Cryptoki; if it has no need to use Cryptoki, it should then call C_Finalize
immediately thereafter. This (having the child immediately call C_Initialize and then
call C_Finalize if the parent is using Cryptoki) is considered to be good Cryptoki
programming practice, since it can prevent the existence of dangling duplicate resources
that were created at the time of the f or k() call; however, it is not required by Cryptoki.

6.6.2 Applications and threads

Some applications will access a Cryptoki library in a multi-threaded fashion. Cryptoki
enables applications to provide information to libraries so that they can give appropriate
support for multi-threading. In particular, when an application initializes a Cryptoki
library with a call to C_Initialize, it can specify one of four possible multi-threading
behaviors for the library:

1. The application can specify that it will not be accessing the library concurrently from
multiple threads, and so the library need not worry about performing any type of
locking for the sake of thread-safety.

2. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must be able to use native operation system
synchronization primitives to ensure proper thread-safe behavior.

3. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use a set of application-supplied
synchronization primitives to ensure proper thread-safe behavior.

4. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use either the native operation system
synchronization primitives or a set of application-supplied synchronization primitives
to ensure proper thread-safe behavior.

The 3 and 4" types of behavior listed above are appropriate for multi-threaded
applications which are not using the native operating system thread model. The
application-supplied synchronization primitives consist of four functions for handling
mutex (mutual exclusion) objects in the application’s threading model. Mutex objects are
simple objects which can be in either of two states at any given time: unlocked or locked.
If a call is made by a thread to lock a mutex which is already locked, that thread blocks
(waits) until the mutex is unlocked; then it locks it and the call returns. If more than one
thread is blocking on a particular mutex, and that mutex becomes unlocked, then exactly
one of those threads will get the lock on the mutex and return control to the caller (the
other blocking threads will continue to block and wait for their turn).

Copyright © 2004 RSA Security Inc. June 2004



6. GENERAL OVERVIEW 19

See Section 9.7 for more information on Cryptoki’s view of mutex objects.

In addition to providing the above thread-handling information to a Cryptoki library at
initialization time, an application can also specify whether or not application threads
executing library calls may use native operating system calls to spawn new threads.

6.7 Sessions

Cryptoki requires that an application open one or more sessions with a token to gain
access to the token’s objects and functions. A session provides a logical connection
between the application and the token. A session can be a read/write (R/W) session or a
read-only (R/O) session. Read/write and read-only refer to the access to token objects,
not to session objects. In both session types, an application can create, read, write and
destroy session objects, and read token objects. However, only in a read/write session
can an application create, modify, and destroy token objects.

After it opens a session, an application has access to the token’s public objects. All
threads of a given application have access to exactly the same sessions and the same
session objects. To gain access to the token’s private objects, the normal user must log in
and be authenticated.

When a session is closed, any session objects which were created in that session are
destroyed. This holds even for session objects which are “being used” by other sessions.
That is, if a single application has multiple sessions open with a token, and it uses one of
them to create a session object, then that session object is visible through any of that
application’s sessions. However, as soon as the session that was used to create the object
is closed, that object is destroyed.

Cryptoki supports multiple sessions on multiple tokens. An application may have one or
more sessions with one or more tokens. In general, a token may have multiple sessions
with one or more applications. A particular token may allow an application to have only
a limited number of sessions—or only a limited number of read/write sessions-- however.

An open session can be in one of several states. The session state determines allowable
access to objects and functions that can be performed on them. The session states are
described in Section 6.7.1 and Section 6.7.2.

6.7.1 Read-only session states

A read-only session can be in one of two states, as illustrated in the following figure.
When the session is initially opened, it is in either the “R/O Public Session” state (if the
application has no previously open sessions that are logged in) or the “R/O User
Functions” state (if the application already has an open session that is logged in). Note
that read-only SO sessions do not exist.

June 2004 Copyright © 2004 RSA Security Inc.



20 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Close Session/
Device Removed

R/O Public

Open Session Session

Login User

Close Session/
Device Removed

R/O User
Functions

Open Session

Figure 3, Read-Only Session States

The following table describes the session states:

Table 4, Read-Only Session States

State Description

R/O Public Session | The application has opened a read-only session. The application
has read-only access to public token objects and read/write access
to public session objects.

R/O User Functions | The normal user has been authenticated to the token. The
application has read-only access to all token objects (public or
private) and read/write access to all session objects (public or
private).

6.7.2 Read/write session states

A read/write session can be in one of three states, as illustrated in the following figure.
When the session is opened, it is in either the “R/W Public Session” state (if the
application has no previously open sessions that are logged in), the “R/W User
Functions” state (if the application already has an open session that the normal user is
logged into), or the “R/W SO Functions” state (if the application already has an open
session that the SO is logged into).

Copyright © 2004 RSA Security Inc. June 2004



6. GENERAL OVERVIEW 21

R/W SO
Functions

Close Session/

Open Session Device Removed

Open Session Close Session/

R/W Public
Session

Device Removed

Login User

Close Session/

Open Session .
Device Removed

R/W User
Functions

Figure 4, Read/Write Session States

The following table describes the session states:

Table 5, Read/Write Session States

State Description

R/W Public Session | The application has opened a read/write session. The application
has read/write access to all public objects.

R/W SO Functions | The Security Officer has been authenticated to the token. The
application has read/write access only to public objects on the
token, not to private objects. The SO can set the normal user’s

PIN.
R/W User The normal user has been authenticated to the token. The
Functions application has read/write access to all objects.

6.7.3 Permitted object accesses by sessions

The following table summarizes the kind of access each type of session has to each type
of object. A given type of session has either read-only access, read/write access, or no
access whatsoever to a given type of object.

Note that creating or deleting an object requires read/write access to it, e.g., a “R/O User
Functions” session cannot create or delete a token object.

June 2004 Copyright © 2004 RSA Security Inc.



22 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 6, Access to Different Types Objects by Different Types of Sessions

Type of session
R/O R/W R/O R/W R/W
Type of object Public Public User User SO
Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/O R/W R/O R/W R/W
Private token object R/O R/W

As previously indicated, the access to a given session object which is shown in Table 6 is
limited to sessions belonging to the application which owns that object (i.e., which
created that object).

6.7.4 Session events

Session events cause the session state to change. The following table describes the
events:

Table 7, Session Events

Event Occurs when...

Log In SO the SO is authenticated to the token.

Log In User the normal user is authenticated to the token.

Log Out the application logs out the current user (SO or normal user).
Close Session the application closes the session or closes all sessions.

Device Removed | the device underlying the token has been removed from its slot.

When the device is removed, all sessions of all applications are automatically logged out.
Furthermore, all sessions any applications have with the device are closed (this latter
behavior was not present in Version 1.0 of Cryptoki)—an application cannot have a
session with a token that is not present. Realistically, Cryptoki may not be constantly
monitoring whether or not the token is present, and so the token’s absence could
conceivably not be noticed until a Cryptoki function is executed. If the token is re-
inserted into the slot before that, Cryptoki might never know that it was missing.

In Cryptoki, all sessions that an application has with a token must have the same
login/logout status (i.e., for a given application and token, one of the following holds: all
sessions are public sessions; all sessions are SO sessions; or all sessions are user
sessions). When an application’s session logs into a token, a// of that application’s
sessions with that token become logged in, and when an application’s session logs out of
a token, all of that application’s sessions with that token become logged out. Similarly,
for example, if an application already has a R/O user session open with a token, and then
opens a R/W session with that token, the R/W session is automatically logged in.

Copyright © 2004 RSA Security Inc. June 2004



6. GENERAL OVERVIEW 23

This implies that a given application may not simultaneously have SO sessions and user
sessions open with a given token. It also implies that if an application has a R/'W SO
session with a token, then it may not open a R/O session with that token, since R/O SO
sessions do not exist. For the same reason, if an application has a R/O session open, then
it may not log any other session into the token as the SO.

6.7.5 Session handles and object handles

A session handle is a Cryptoki-assigned value that identifies a session. It is in many
ways akin to a file handle, and is specified to functions to indicate which session the
function should act on. All threads of an application have equal access to all session
handles. That is, anything that can be accomplished with a given file handle by one
thread can also be accomplished with that file handle by any other thread of the same
application.

Cryptoki also has object handles, which are identifiers used to manipulate Cryptoki
objects. Object handles are similar to session handles in the sense that visibility of a
given object through an object handle is the same among all threads of a given
application. R/O sessions, of course, only have read-only access to token objects,
whereas R/W sessions have read/write access to token objects.

Valid session handles and object handles in Cryptoki always have nonzero values. For
developers’ convenience, Cryptoki defines the following symbolic value:

CK_I NVALI D_HANDLE
6.7.6 Capabilities of sessions

Very roughly speaking, there are three broad types of operations an open session can be
used to perform: administrative operations (such as logging in); object management
operations (such as creating or destroying an object on the token); and cryptographic
operations (such as computing a message digest). Cryptographic operations sometimes
require more than one function call to the Cryptoki API to complete. In general, a single
session can perform only one operation at a time; for this reason, it may be desirable for a
single application to open multiple sessions with a single token. For efficiency’s sake,
however, a single session on some tokens can perform the following pairs of operation
types simultaneously: message digesting and encryption; decryption and message
digesting; signature or MACing and encryption; and decryption and verifying signatures
or MACs. Details on performing simultaneous cryptographic operations in one session
are provided in Section 11.13.

A consequence of the fact that a single session can, in general, perform only one
operation at a time is that an application should never make multiple simultaneous
function calls to Cryptoki which use a common session. If multiple threads of an
application attempt to use a common session concurrently in this fashion, Cryptoki does
not define what happens. This means that if multiple threads of an application all need to

June 2004 Copyright © 2004 RSA Security Inc.



24 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

use Cryptoki to access a particular token, it might be appropriate for each thread to have
its own session with the token, unless the application can ensure by some other means
(e.g., by some locking mechanism) that no sessions are ever used by multiple threads
simultaneously. This is true regardless of whether or not the Cryptoki library was
initialized in a fashion which permits safe multi-threaded access to it. Even if it is safe to
access the library from multiple threads simultaneously, it is still not necessarily safe to
use a particular session from multiple threads simultaneously.

6.7.7 Example of use of sessions

We give here a detailed and lengthy example of how multiple applications can make use
of sessions in a Cryptoki library. Despite the somewhat painful level of detail, we highly
recommend reading through this example carefully to understand session handles and
object handles.

We caution that our example is decidedly not meant to indicate how multiple applications
should use Cryptoki simultaneously; rather, it is meant to clarify what uses of Cryptoki’s
sessions and objects and handles are permissible. In other words, instead of
demonstrating good technique here, we demonstrate “pushing the envelope”.

For our example, we suppose that two applications, A and B, are using a Cryptoki library
to access a single token T. Each application has two threads running: A has threads A1l
and A2, and B has threads B1 and B2. We assume in what follows that there are no
instances where multiple threads of a single application simultaneously use the same
session, and that the events of our example occur in the order specified, without
overlapping each other in time.

1. Al and B1 each initialize the Cryptoki library by calling C_Initialize (the specifics
of Cryptoki functions will be explained in Section 10.12). Note that exactly one call
to C_Initialize should be made for each application (as opposed to one call for every
thread, for example).

2. Al opens a R/W session and receives the session handle 7 for the session. Since this
is the first session to be opened for A, it is a public session.

3. A2 opens a R/O session and receives the session handle 4. Since all of A’s existing
sessions are public sessions, session 4 is also a public session.

4. Al attempts to log the SO into session 7. The attempt fails, because if session 7
becomes an SO session, then session 4 does, as well, and R/O SO sessions do not
exist. Al receives an error code indicating that the existence of a R/O session has
blocked this attempt to log in (CKR_SESSION READ ONLY_ EXISTS).

5. A2 logs the normal user into session 7. This turns session 7 into a R/W user session,
and turns session 4 into a R/O user session. Note that because Al and A2 belong to

Copyright © 2004 RSA Security Inc. June 2004



6. GENERAL OVERVIEW 25

10.

11.

12.

13.

14.

15.

16.

the same application, they have equal access to all sessions, and therefore, A2 is able
to perform this action.

A2 opens a R/W session and receives the session handle 9. Since all of A’s existing
sessions are user sessions, session 9 is also a user session.

A1 closes session 9.

B1 attempts to log out session 4. The attempt fails, because A and B have no access
rights to each other’s sessions or objects. B1 receives an error message which
indicates that there is no such session handle
(CKR_SESSION HANDLE INVALID).

B2 attempts to close session 4. The attempt fails in precisely the same way as B1’s
attempt to log out session 4 failed (ie, B2 receives a
CKR _SESSION HANDLE INVALID error code).

B1 opens a R/W session and receives the session handle 7. Note that, as far as B is
concerned, this is the first occurrence of session handle 7. A’s session 7 and B’s
session 7 are completely different sessions.

B1 logs the SO into [B’s] session 7. This turns B’s session 7 into a R/W SO session,
and has no effect on either of A’s sessions.

B2 attempts to open a R/O session. The attempt fails, since B already has an SO
session open, and R/O SO sessions do not exist. Bl receives an error message
indicating that the existence of an SO session has blocked this attempt to open a R/O
session (CKR_SESSION READ WRITE SO EXISTYS).

Al uses [A’s] session 7 to create a session object O1 of some sort and receives the
object handle 7. Note that a Cryptoki implementation may or may not support
separate spaces of handles for sessions and objects.

B1 uses [B’s] session 7 to create a token object Q2 of some sort and receives the
object handle 7. As with session handles, different applications have no access rights
to each other’s object handles, and so B’s object handle 7 is entirely different from
A’s object handle 7. Of course, since B1 is an SO session, it cannot create private
objects, and so O2 must be a public object (if B1 attempted to create a private object,
the attempt would fail with error code CKR USER NOT LOGGED IN or
CKR_TEMPLATE INCONSISTENT).

B2 uses [B’s] session 7 to perform some operation to modify the object associated
with [B’s] object handle 7. This modifies O2.

A1 uses [A’s] session 4 to perform an object search operation to get a handle for O2.
The search returns object handle 1. Note that A’s object handle 1 and B’s object
handle 7 now point to the same object.

June 2004 Copyright © 2004 RSA Security Inc.



26

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

6.8

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Al attempts to use [A’s] session 4 to modify the object associated with [A’s] object
handle 1. The attempt fails, because A’s session 4 is a R/O session, and is therefore
incapable of modifying O2, which is a token object. Al receives an error message
indicating that the session is a R/O session (CKR_SESSION READ ONLY).

Al uses [A’s] session 7 to modify the object associated with [A’s] object handle 1.
This time, since A’s session 7 is a R/W session, the attempt succeeds in modifying
02.

B1 uses [B’s] session 7 to perform an object search operation to find O1. Since O1 is
a session object belonging to A, however, the search does not succeed.

A2 uses [A’s] session 4 to perform some operation to modify the object associated
with [A’s] object handle 7. This operation modifies O1.

A2 uses [A’s] session 7 to destroy the object associated with [A’s] object handle 1.
This destroys O2.

B1 attempts to perform some operation with the object associated with [B’s] object
handle 7. The attempt fails, since there is no longer any such object. B1 receives an
error  message  indicating  that  its  object  handle is  invalid
(CKR_OBJECT _HANDLE INVALID).

Al logs out [A’s] session 4. This turns A’s session 4 into a R/O public session, and
turns A’s session 7 into a R/W public session.

Al closes [A’s] session 7. This destroys the session object O1, which was created by
A’s session 7.

A2 attempt to use [A’s] session 4 to perform some operation with the object
associated with [A’s] object handle 7. The attempt fails, since there is no longer any
such object. It returns a CKR_OBJECT HANDLE INVALID.

A2 executes a call to C_CloseAllSessions. This closes [A’s] session 4. At this point,
if A were to open a new session, the session would not be logged in (i.e., it would be
a public session).

B2 closes [B’s] session 7. At this point, if B were to open a new session, the session
would not be logged in.

A and B each call C_Finalize to indicate that they are done with the Cryptoki library.

Secondary authentication (Deprecated)

Note: This support may be present for backwards compatibility. Refer to

PKCS11 V 2.11 for details.

Copyright © 2004 RSA Security Inc. June 2004




6. GENERAL OVERVIEW

6.9 Function overview

27

The Cryptoki API consists of a number of functions, spanning slot and token

management and object management, as well as cryptographic functions.
functions are presented in the following table:

Table 8, Summary of Cryptoki Functions

These

Category Function Description
General C Initialize initializes Cryptoki
purpose C Finalize clean up miscellaneous Cryptoki-
functions associated resources
C Getlnfo obtains general information about

Cryptoki

C_GetFunctionList

obtains entry points of Cryptoki library
functions

Slot and token

C_GetSlotList

obtains a list of slots in the system

management C_GetSlotInfo obtains information about a particular slot
functions C_GetTokenInfo obtains information about a particular
token
C_WaitForSlotEvent waits for a slot event (token insertion,
removal, etc.) to occur
C_GetMechanismList obtains a list of mechanisms supported by
a token
C_GetMechanismInfo obtains information about a particular
mechanism
C_InitToken initializes a token
C_InitPIN initializes the normal user’s PIN
C_SetPIN modifies the PIN of the current user
Session C_OpenSession opens a connection between an
management application and a particular token or sets
functions up an application callback for token
insertion
C_CloseSession closes a session
C _CloseAllSessions closes all sessions with a token
C_GetSessionInfo obtains information about the session
C_GetOperationState obtains the cryptographic operations state
of a session
C_SetOperationState sets the cryptographic operations state of a
session
C Login logs into a token
C_Logout logs out from a token
June 2004 Copyright © 2004 RSA Security Inc.




28 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Category Function Description
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeValue obtains an attribute value of an object
C_SetAttributeValue modifies an attribute value of an object
C_FindObjectsInit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation
Encryption C_Encryptlnit initializes an encryption operation
functions C_Encrypt encrypts single-part data
C_EncryptUpdate continues a multiple-part encryption
operation
C_EncryptFinal finishes a multiple-part encryption
operation
Decryption C_Decryptlnit initializes a decryption operation
functions C_Decrypt decrypts single-part encrypted data
C_DecryptUpdate continues a multiple-part decryption
operation
C_DecryptFinal finishes a multiple-part decryption
operation
Message C Digestlnit initializes a message-digesting operation
digesting C Digest digests single-part data
functions C_ DigestUpdate continues a multiple-part digesting
operation
C DigestKey digests a key
C_DigestFinal finishes a multiple-part digesting
operation

Copyright © 2004 RSA Security Inc.

June 2004




6. GENERAL OVERVIEW

29

Category Function Description

Signing C_Signlnit initializes a signature operation
and MACing C Sign signs single-part data

functions C_SignUpdate continues a multiple-part signature

operation

C SignFinal

finishes a multiple-part signature
operation

C _SignRecoverlnit

initializes a signature operation, where the
data can be recovered from the signature

C _SignRecover

signs single-part data, where the data can
be recovered from the signature

Functions for C Verifylnit

initializes a verification operation

verifying
signatures C Verify verifies a signature on single-part data
and MACs C_VerifyUpdate continues a multiple-part verification

operation

C_VerifyFinal

finishes a multiple-part verification
operation

C_VerifyRecoverlnit

initializes a verification operation where
the data is recovered from the signature

C_VerifyRecover

verifies a signature on single-part data,
where the data is recovered from the
signature

Dual-purpose C DigestEncryptUpdate

continues simultaneous multiple-part

cryptographic digesting and encryption operations
functions C DecryptDigestUpdate | continues simultaneous multiple-part
decryption and digesting operations
C _SignEncryptUpdate continues simultaneous multiple-part
signature and encryption operations
C DecryptVerifyUpdate | continues simultaneous multiple-part
decryption and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C_WrapKey wraps (encrypts) a key
C_UnwrapKey unwraps (decrypts) a key
C DeriveKey derives a key from a base key
June 2004 Copyright © 2004 RSA Security Inc.




30 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Category Function Description

Random C_SeedRandom mixes in additional seed material to the

number random number generator

generation

functions C_GenerateRandom generates random data

Parallel C_GetFunctionStatus legacy function which always returns

function CKR_FUNCTION NOT PARALLEL

management

functions C_CancelFunction legacy function which always returns
CKR FUNCTION NOT PARALLEL

Callback application-supplied function to process

function notifications from Cryptoki

7 Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a
computer or communications system. Two of the particular features of the interface that
facilitate such security are the following:

1. Access to private objects on the token, and possibly to cryptographic functions and/or
certificates on the token as well, requires a PIN. Thus, possessing the cryptographic
device that implements the token may not be sufficient to use it; the PIN may also be
needed.

2. Additional protection can be given to private keys and secret keys by marking them
as “sensitive” or “unextractable”. Sensitive keys cannot be revealed in plaintext off
the token, and unextractable keys cannot be revealed off the token even when
encrypted (though they can still be used as keys).

It is expected that access to private, sensitive, or unextractable objects by means other

than Cryptoki (e.g., other programming interfaces, or reverse engineering of the device)
would be difficult.

If a device does not have a tamper-proof environment or protected memory in which to
store private and sensitive objects, the device may encrypt the objects with a master key
which is perhaps derived from the user’s PIN. The particular mechanism for protecting
private objects is left to the device implementation, however.

Based on these features it should be possible to design applications in such a way that the
token can provide adequate security for the objects the applications manage.

Of course, cryptography is only one element of security, and the token is only one
component in a system. While the token itself may be secure, one must also consider the
security of the operating system by which the application interfaces to it, especially since
the PIN may be passed through the operating system. This can make it easy for a rogue

Copyright © 2004 RSA Security Inc. June 2004



8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++

application on the operating system to obtain the PIN; it is also possible that other
devices monitoring communication lines to the cryptographic device can obtain the PIN.
Rogue applications and devices may also change the commands sent to the cryptographic
device to obtain services other than what the application requested.

It is important to be sure that the system is secure against such attack. Cryptoki may well
play a role here; for instance, a token may be involved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sensitive,”
since a key that is sensitive will always remain sensitive. Similarly, a key that is
unextractable cannot be modified to be extractable.

An application may also want to be sure that the token is “legitimate” in some sense (for
a variety of reasons, including export restrictions and basic security). This is outside the
scope of the present standard, but it can be achieved by distributing the token with a
built-in, certified public/private-key pair, by which the token can prove its identity. The
certificate would be signed by an authority (presumably the one indicating that the token
is “legitimate”) whose public key is known to the application. The application would
verify the certificate and challenge the token to prove its identity by signing a time-
varying message with its built-in private key.

Once a normal user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform; the user may perform any operation
supported by the token. Some tokens may not even require any type of authentication to
make use of its cryptographic functions.

8 Platform- and compiler-dependent directives for C or C++

There is a large array of Cryptoki-related data types which are defined in the Cryptoki
header files. Certain packing- and pointer-related aspects of these types are platform- and
compiler-dependent; these aspects are therefore resolved on a platform-by-platform (or
compiler-by-compiler) basis outside of the Cryptoki header files by means of
preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives must be
issued before including a Cryptoki header file. These directives are described in the
remainder of Section 8.

8.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. In particular, on
the Win32 and Winl6 platforms, Cryptoki structures should be packed with 1-byte
alignment. In a UNIX environment, it may or may not be necessary (or even possible) to
alter the byte-alignment of structures.

June 2004 Copyright © 2004 RSA Security Inc.

31



32 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

8.2 Pointer-related macros

Because different platforms and compilers have different ways of dealing with different
types of pointers, Cryptoki requires the following 6 macros to be set outside the scope of
Cryptoki:

¢+ CK PTR

CK_PTRis the “indirection string” a given platform and compiler uses to make a pointer
to an object. It is used in the following fashion:

typedef CK_BYTE CK_PTR CK_BYTE_PTR
¢ CK_DEFINE_FUNCTION

CK_DEFI NE_FUNCTI ON(r et urnType, nane), when followed by a parentheses-
enclosed list of arguments and a function definition, defines a Cryptoki API function in a
Cryptoki library. r et ur nType is the return type of the function, and namne is its name.
It is used in the following fashion:

CK_DEFI NE_FUNCTI ON(CK_RV, C Initialize)(
CK_ VA D _PTR pReserved
)

{
}
¢ CK DECLARE_FUNCTION

CK_DECLARE_FUNCTI ON(r et ur nType, nane), when followed by a parentheses-
enclosed list of arguments and a semicolon, declares a Cryptoki API function in a
Cryptoki library. r et ur nType is the return type of the function, and nane is its name.
It is used in the following fashion:

CK_DECLARE _FUNCTION(CK RV, Clnitialize)(
CK_VA D _PTR pReserved
);

¢ CK DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTI ON_PQO NTER(returnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to a Cryptoki API function in a Cryptoki library. r et ur nType is the return
type of the function, and name is its name. It can be used in either of the following
fashions to define a function pointer variable, myC | ni ti al i ze, which can point to a
C_Initialize function in a Cryptoki library (note that neither of the following code
snippets actually assigns a value to myC_I ni ti al i ze):

Copyright © 2004 RSA Security Inc. June 2004



8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++ 33

CK_DECLARE_FUNCTI ON_PO NTER(CK_RV, nyC Initialize)(
CK_ VA D _PTR pReserved
);

or:

t ypedef CK DECLARE _FUNCTI ON_PO NTER( CK_RV,
myC InitializeType)(
CK_ VA D _PTR pReserved

)
nyC InitializeType nyClnitialize;

¢ CK CALLBACK FUNCTION

CK_CALLBACK FUNCTI ON(returnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to an application callback function that can be used by a Cryptoki API
function in a Cryptoki library. returnType is the return type of the function, and
name is its name. It can be used in either of the following fashions to define a function
pointer variable, myCal | back, which can point to an application callback which takes
arguments ar gs and returns a CK_RYV (note that neither of the following code snippets
actually assigns a value to my Cal | back):

CK_CALLBACK FUNCTI ON( CK_RV, nyCal | back) (args);

or:
t ypedef CK_CALLBACK FUNCTI ON( CK_RV,
myCal | backType) (args);
myCal | backType nyCal | back;
¢ NULL _PTR

NULL_PTR s the value of a NULL pointer. In any ANSI C environment—and in many
others as well—NULL _PTR should be defined simply as 0.

8.3 Sample platform- and compiler-dependent code

8.3.1 Win32

Developers using Microsoft Developer Studio 5.0 to produce C or C++ code which
implements or makes use of a Win32 Cryptoki .dll might issue the following directives
before including any Cryptoki header files:

#pragma pack(push, cryptoki, 1)
#define CK | MPORT_SPEC _ decl spec(dl linport)

June 2004 Copyright © 2004 RSA Security Inc.



34 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

/* Define CRYPTOKI EXPORTS during the build of cryptok
* libraries. Do not define it in applications.
*/

#i f def CRYPTOKI _EXPORTS

#defi ne CK_EXPORT_SPEC _ decl spec(dl | export)

#el se

#defi ne CK_EXPORT_SPEC CK_| MPORT_SPEC

#endi f

/* Ensures the calling convention for Wn32 builds */
#define CK CALL _SPEC _ cdecl

#define CK PTR *

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType CK _EXPORT_SPEC CK_CALL_SPEC name

#defi ne CK_DECLARE FUNCTI ON(returnType, nane) \
returnType CK_EXPORT_SPEC CK_CALL_SPEC nane

#defi ne CK _DECLARE FUNCTI ON_ PO NTER(returnType, nane) \
returnType CK_| MPORT_SPEC ( CK_CALL_SPEC CK_PTR nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nanme) \
returnType (CK _CALL_SPEC CK_PTR hane)

#1 f ndef NULL_PTR
#define NULL_PTR O
#endi f

Hence the calling convention for all C_xxx functions should correspond to "cdecl" where
function parameters are passed from right to left and the caller removes parameters from
the stack when the call returns.

After including any Cryptoki header files, they might issue the following directives to
reset the structure packing to its earlier value:

#pragma pack(pop, cryptoki)
8.3.2 Winlé6

Developers using a pre-5.0 version of Microsoft Developer Studio to produce C or C++
code which implements or makes use of a Winl16 Cryptoki .dll might issue the following
directives before including any Cryptoki header files:

#pragma pack(1)

#define CK_ PTR far *

Copyright © 2004 RSA Security Inc. June 2004



8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++ 35

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType __ export _far _pascal nane

#def i ne CK_DECLARE _FUNCTI ON(r et urnType, nane) \
returnType _ _export _far _pascal nane

#defi ne CK_DECLARE FUNCTI ON_PO NTER(returnType, nane) \
returnType _ _export _far _pascal (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType _far _pascal (* nane)

#i f ndef NULL_PTR
#define NULL_PTR O
#endi f

8.3.3 Generic UNIX

Developers performing generic UNIX development might issue the following directives
before including any Cryptoki header files:

#define CK PTR *

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType nanme

#defi ne CK_DECLARE FUNCTI ON(returnType, nane) \
returnType nanme

#def i ne CK _DECLARE_FUNCTI ON_PO NTER(ret urnType, nane) \
returnType (* nane)

#defi ne CK_CALLBACK FUNCTI ON(returnType, nane) \
returnType (* nane)

#i f ndef NULL_PTR

#define NULL_PTR O
#endi f

June 2004 Copyright © 2004 RSA Security Inc.



36 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

9 General data types

The general Cryptoki data types are described in the following subsections. The data
types for holding parameters for various mechanisms, and the pointers to those
parameters, are not described here; these types are described with the information on the
mechanisms themselves, in Section 12.

A C or C++ source file in a Cryptoki application or library can define all these types (the
types described here and the types that are specifically used for particular mechanism
parameters) by including the top-level Cryptoki include file, pkcs11. h. pkcsl1l. h,
in turn, includes the other Cryptoki include files, pkcs11t. h and pkcs1l1lf.h. A
source file can also include just pkcs11t . h (instead of pkcs11. h); this defines most
(but not all) of the types specified here.

When including either of these header files, a source file must specify the preprocessor
directives indicated in Section 8.

9.1 General information

Cryptoki represents general information with the following types:

¢ CK_VERSION; CK_VERSION_PTR

CK_VERSION is a structure that describes the version of a Cryptoki interface, a
Cryptoki library, or an SSL implementation, or the hardware or firmware version of a slot
or token. It is defined as follows:

t ypedef struct CK VERSI ON {
CK_BYTE mmaj or;
CK_BYTE mi nor;

} CK_VERSI O\,

The fields of the structure have the following meanings:

major  major version number (the integer portion of the
version)

minor  minor version number (the hundredths portion of the
version)

Example: For version 1.0, major = 1 and minor = 0. For version 2.10, major = 2 and
minor = 10. Table 9 below lists the major and minor version values for the officially
published Cryptoki specifications.

Copyright © 2004 RSA Security Inc. June 2004



9. GENERAL DATA TYPES 37

Table 9, Major and minor version values for published Cryptoki specifications

Version | major | minor
1.0 0x01 0x00
2.01 0x02 0x01
2.10 0x02 0x0a
2.11 0x02 0x0b
2.20 0x02 Ox14

Minor revisions of the Cryptoki standard are always upwardly compatible within the
same major version number.

CK_VERSION_PTR is a pointer to a CK_VERSION.

¢ CK_INFO; CK_INFO _PTR

CK_INFO provides general information about Cryptoki. It is defined as follows:

typedef struct CK_I NFO {
CK_VERSI ON crypt oki Ver si on;
CK_UTF8CHAR manuf acturerl D[ 32];
CK_FLAGS f | ags;
CK_UTF8CHAR | i braryDescri ption[ 32];
CK_VERSI ON | i braryVersi on;

} CK_I NFG

The fields of the structure have the following meanings:

cryptokiVersion Cryptoki interface version number, for compatibility
with future revisions of this interface

manufacturerID 1D of the Cryptoki library manufacturer. Must be
padded with the blank character (* ). Should not be
null-terminated.

flags bit flags reserved for future versions. Must be zero for
this version

libraryDescription  character-string description of the library. Must be
padded with the blank character (* ). Should not be
null-terminated.

libraryVersion Cryptoki library version number

June 2004 Copyright © 2004 RSA Security Inc.



38 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For libraries written to this document, the value of cryptokiVersion should match the
version of this document; the value of libraryVersion is the version number of the library
software itself.

CK INFO_PTR is a pointer to a CK_INFO.

¢ CK NOTIFICATION

CK NOTIFICATION holds the types of notifications that Cryptoki provides to an
application. It is defined as follows:

t ypedef CK_ULONG CK_NOTI FI CATI ON;

For this version of Cryptoki, the following types of notifications are defined:

CKN_SURRENDER
The notifications have the following meanings:

CKN SURRENDER Cryptoki is surrendering the execution of a function
executing in a session so that the application may
perform other operations. After performing any
desired operations, the application should indicate to
Cryptoki whether to continue or cancel the function
(see Section 11.17.1).

9.2 Slot and token types

Cryptoki represents slot and token information with the following types:

¢ CK SLOT_ID; CK_SLOT_ID PTR

CK SLOT _ID is a Cryptoki-assigned value that identifies a slot. It is defined as
follows:

typedef CK _ULONG CK _SLOT | D
A list of CK SLOT IDs is returned by C_GetSlotList. A priori, any value of

CK _SLOT _ID can be a valid slot identifier—in particular, a system may have a slot
identified by the value 0. It need not have such a slot, however.

CK SLOT _ID PTR s a pointer to a CK_SLOT _ID.

Copyright © 2004 RSA Security Inc. June 2004



9. GENERAL DATA TYPES 39

¢ CK SLOT_INFO; CK_SLOT_INFO_PTR
CK_SLOT_INFO provides information about a slot. It is defined as follows:

t ypedef struct CK SLOT I NFO {
CK_UTF8CHAR sl ot Descri pti on[ 64] ;
CK_UTF8CHAR manuf acturerl D[ 32];
CK_FLAGS f | ags;

CK_VERSI ON har dwar eVer si on;
CK_VERSI ON fi r mnvar eVer si on;
} CK_SLOT_I NFO

The fields of the structure have the following meanings:

slotDescription character-string description of the slot. Must be
padded with the blank character (* ). Should not be
null-terminated.

manufacturerID 1D of the slot manufacturer. Must be padded with the
blank character (* ). Should not be null-terminated.

flags bits flags that provide capabilities of the slot. The
flags are defined below

hardwareVersion version number of the slot’s hardware
firmwareVersion  version number of the slot’s firmware

The following table defines the flags field:

Table 10, Slot Information Flags

Bit Flag Mask Meaning

CKF TOKEN PRESENT 0x00000001 | True if a token is present in the slot
(e.g., a device is in the reader)

CKF REMOVABLE DEVICE | 0x00000002 | True if the reader supports removable
devices

CKF HW _ SLOT 0x00000004 | True if the slot is a hardware slot, as
opposed to a software slot
implementing a “soft token”

For a given slot, the value of the CKF_REMOVABLE DEVICE flag never changes.
In addition, if this flag is not set for a given slot, then the CKF_TOKEN PRESENT
flag for that slot is always set. That is, if a slot does not support a removable device, then
that slot always has a token in it.

CK_SLOT_INFO_PTR is a pointer to a CK_SLOT_INFO.

June 2004 Copyright © 2004 RSA Security Inc.



40 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO provides information about a token. It is defined as follows:

typedef struct CK _TOKEN_I NFO {
CK_UTF8CHAR | abel [ 32];
CK_UTF8CHAR manuf acturerl D[ 32];
CK_UTF8CHAR nodel [ 16] ;
CK_CHAR seri al Nunber [ 16];

CK_FLAGS fl ags;

CK_ULONG ul MaxSessi onCount ;
CK_ULONG ul Sessi onCount ;
CK_ULONG ul MaxRwSessi onCount ;
CK_ULONG ul RwSessi onCount ;
CK_ULONG ul MaxPi nLen;
CK_ULONG ul M nPi nLen;
CK_ULONG ul Tot al Publ i cMenory;
CK_ULONG ul FreePubl i cMenory;
CK_ULONG ul Tot al Pri vat eMenory;
CK_ULONG ul FreePrivat eMenory;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON fi r mnvar eVer si on;
CK_CHAR ut cTi ne[ 16] ;

} CK_TOKEN | NFQO,

The fields of the structure have the following meanings:

label

manufacturerID

model

serialNumber

flags

ulMaxSessionCount

Copyright © 2004 RSA Security Inc.

application-defined label, assigned during token
initialization. Must be padded with the blank character
( ©). Should not be null-terminated.

ID of the device manufacturer. Must be padded with
the blank character (* ©). Should not be null-

terminated.

model of the device. Must be padded with the blank
character (* ). Should not be null-terminated.

character-string serial number of the device. Must be
padded with the blank character (* ). Should not be
null-terminated.

bit flags indicating capabilities and status of the device
as defined below

maximum number of sessions that can be opened with
the token at one time by a single application (see note
below)

June 2004



9. GENERAL DATA TYPES

ulSessionCount

ulMaxRwSessionCount

ulRwSessionCount

ulMaxPinLen
ulMinPinLen

ulTotalPublicMemory

ulFreePublicMemory

ulTotal PrivateMemory

ulFreePrivateMemory

hardwareVersion
firmwareVersion

utcTime

June 2004

41

number of sessions that this application currently has
open with the token (see note below)

maximum number of read/write sessions that can be
opened with the token at one time by a single
application (see note below)

number of read/write sessions that this application
currently has open with the token (see note below)

maximum length in bytes of the PIN
minimum length in bytes of the PIN

the total amount of memory on the token in bytes in
which public objects may be stored (see note below)

the amount of free (unused) memory on the token in
bytes for public objects (see note below)

the total amount of memory on the token in bytes in
which private objects may be stored (see note below)

the amount of free (unused) memory on the token in
bytes for private objects (see note below)

version number of hardware
version number of firmware

current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx (4
characters for the year; 2 characters each for the
month, the day, the hour, the minute, and the second;
and 2 additional reserved ‘0’ characters). The value of
this field only makes sense for tokens equipped with a
clock, as indicated in the token information flags (see
below)

Copyright © 2004 RSA Security Inc.



42 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table defines the flags field:

Table 11, Token Information Flags

Bit Flag

Mask

Meaning

CKF _RNG

0x00000001

True if the token
has its own
random number
generator

CKF_WRITE PROTECTED

0x00000002

True if the token is
write-protected
(see below)

CKF_LOGIN_REQUIRED

0x00000004

True if there are
some
cryptographic
functions that a
user must be
logged in to
perform

CKF _USER_PIN INITIALIZED

0x00000008

True if the normal
user’s PIN has
been initialized

CKF RESTORE KEY NOT NEEDED

0x00000020

True if a
successful save of
a session’s
cryptographic
operations state
always contains all
keys needed to
restore the state of
the session

CKF_CLOCK_ON_TOKEN

0x00000040

True if token has
1ts own hardware
clock

CKF _PROTECTED AUTHENTICATION PATH

0x00000100

True if token has a
“protected
authentication
path”, whereby a
user can log into
the token without
passing a PIN
through the
Cryptoki library

Copyright © 2004 RSA Security Inc.

June 2004




9. GENERAL DATA TYPES

43

Bit Flag

Mask

Meaning

CKF DUAL CRYPTO OPERATIONS

0x00000200

True if a single
session with the
token can perform
dual cryptographic
operations (see
Section 11.13)

CKF _TOKEN INITIALIZED

0x00000400

True if the token
has been
initialized using

C InitializeToken
or an equivalent
mechanism outside
the scope of this
standard. Calling
C_InitializeToken
when this flag is
set will cause the
token to be
reinitialized.

CKF_SECONDARY AUTHENTICATION

0x00000800

True if the token
supports secondary
authentication for
private key
objects.
(Deprecated; new
implementations
MUST NOT set
this flag)

CKF_USER PIN COUNT LOW

0x00010000

True if an
incorrect user
login PIN has been
entered at least
once since the last
successful
authentication.

CKF USER PIN FINAL TRY

0x00020000

True if supplying
an incorrect user
PIN will it to
become locked.

June 2004

Copyright © 2004 RSA Security Inc.




44 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Bit Flag Mask Meaning
CKF _USER_PIN LOCKED 0x00040000 | True if the user
PIN has been

locked. User login
to the token is not
possible.

CKF _USER PIN TO BE CHANGED 0x00080000 | True if the user
PIN value is the
default value set
by token
initialization or
manufacturing, or
the PIN has been
expired by the
card.

CKF_SO_PIN_COUNT_LOW 0x00100000 | True if an
incorrect SO login
PIN has been
entered at least
once since the last
successful
authentication.

CKF SO PIN FINAL TRY 0x00200000 | True if supplying
an incorrect SO
PIN will it to
become locked.

CKF_SO PIN LOCKED 0x00400000 | True if the SO PIN
has been locked.
User login to the
token is not
possible.

CKF_SO PIN TO BE CHANGED 0x00800000 | True if the SO PIN
value is the default
value set by token
initialization or
manufacturing, or
the PIN has been
expired by the
card.

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki.
An application may be unable to perform certain actions on a write-protected token; these
actions can include any of the following, among others:

* Creating/modifying/deleting any object on the token.

Copyright © 2004 RSA Security Inc. June 2004



9. GENERAL DATA TYPES 45

Creating/modifying/deleting a token object on the token.
* Changing the SO’s PIN.

* Changing the normal user’s PIN.

The token may change the value of the CKF_WRITE_PROTECTED flag depending
on the session state to implement its object management policy. For instance, the token
may set the CKF_WRITE PROTECTED flag unless the session state is R/'W SO or
R/W User to implement a policy that does not allow any objects, public or private, to be
created, modified, or deleted unless the user has successfully called C_Login.

The CKF_USER_PIN _COUNT_LOW, CKF_USER_PIN_COUNT_LOW,
CKF_USER_PIN_FINAL_TRY, and CKF_SO_PIN_FINAL_TRY flags may always
be set to false if the token does not support the functionality or will not reveal the
information because of its security policy.

The CKF_USER_PIN_TO _BE_CHANGED and
CKF_SO_PIN _TO BE CHANGED flags may always be set to false if the token does
not support the functionality. If a PIN is set to the default value, or has expired, the
appropriate CKF_USER_PIN_TO_BE _CHANGED or
CKF_SO_PIN_TO_BE_CHANGED flag is set to true. When either of these flags are
true, logging in with the corresponding PIN will succeed, but only the C_SetPIN function
can be called. Calling any other function that required the user to be logged in will cause
CKR PIN EXPIRED to be returned until C_SetPIN is called successfully.

Note: The fields wulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,
ulRwSessionCount, ulTotalPublicMemory, ulFreePublicMemory, ulTotal PrivateMemory,

and ulFreePrivateMemory can have the special value
CK _UNAVAILABLE INFORMATION, which means that the token and/or library is
unable or unwilling to provide that information. In addition, the fields

ulMaxSessionCount and ulMaxRwSessionCount can have the special value
CK_EFFECTIVELY_INFINITE, which means that there is no practical limit on the
number of sessions (resp. R/W sessions) an application can have open with the token.

It is important to check these fields for these special values. This is particularly true for
CK _EFFECTIVELY INFINITE, since an application seeing this value in the
ulMaxSessionCount or ulMaxRwSessionCount field would otherwise conclude that it
can’t open any sessions with the token, which is far from being the case.

The upshot of all this is that the correct way to interpret (for example) the
ulMaxSessionCount field is something along the lines of the following:

CK_TOKEN_| NFO i nf o;

i f ((OK_LONG info.ul MaxSessi onCount

June 2004 Copyright © 2004 RSA Security Inc.



46 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

== CK_UNAVAI LABLE_| NFORMATI ON) {
/* Token refuses to give val ue of ul MaxSessi onCount */

} else if (info.ul MaxSessionCount ==
CK_EFFECTI VELY_INFINITE) {
/* Application can open as many sessions as it wants */

1 else {
/* ul MaxSessi onCount really does contain what it should
*/
}

CK_TOKEN_INFO_PTR is a pointer to a CK_TOKEN_INFO.

9.3 Session types

Cryptoki represents session information with the following types:

¢ CK_SESSION HANDLE; CK_SESSION_HANDLE_PTR

CK _SESSION _HANDLE is a Cryptoki-assigned value that identifies a session. It is
defined as follows:

t ypedef CK _ULONG CK_SESSI ON_HANDLE

Valid session handles in Cryptoki always have nonzero values. For developers’
convenience, Cryptoki defines the following symbolic value:

CK_| NVALI D_HANDLE

CK_SESSION_HANDLE_PTR is a pointer to a CK_SESSION_HANDLE.

¢ CK_USER TYPE

CK _USER_TYPE holds the types of Cryptoki users described in Section 6.5, and, in
addition, a context-specific type described in Section 10.9. It is defined as follows:

typedef CK_ULONG CK_USER TYPE;

Copyright © 2004 RSA Security Inc. June 2004



9. GENERAL DATA TYPES 47

For this version of Cryptoki, the following types of users are defined:

CKU_SO
CKU_USER
CKU_CONTEXT_SPECI FI C

¢ CK STATE

CK_STATE holds the session state, as described in Sections 6.7.1 and 6.7.2. It is defined
as follows:

t ypedef CK _ULONG CK_STATE;

For this version of Cryptoki, the following session states are defined:

CKS_RO PUBLI C_SESSI ON
CKS_RO_USER_FUNCTI ONS
CKS_RW PUBLI C_SESSI ON
CKS_RW USER_FUNCTI ONS
CKS_RW SO FUNCTI ONS

¢ CK_SESSION INFO; CK_SESSION_INFO PTR

CK_SESSION_INFO provides information about a session. It is defined as follows:

typedef struct CK_SESSI ON | NFO {
CK_SLOT_I D sl ot 1D,
CK_STATE st at e,
CK_FLAGS f | ags;
CK_ULONG ul Devi ceError;
} CK_SESSI ON_I NFO

The fields of the structure have the following meanings:
slotID ID of the slot that interfaces with the token
state the state of the session

flags  Dit flags that define the type of session; the flags are
defined below

ulDeviceError  an error code defined by the cryptographic device.
Used for errors not covered by Cryptoki.

June 2004 Copyright © 2004 RSA Security Inc.



48 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table defines the flags field:

Table 12, Session Information Flags

Bit Flag Mask Meaning

CKF_RW_SESSION 0x00000002 | True if the session is read/write; false if the
session is read-only

CKF_SERIAL SESSION | 0x00000004 | This flag is provided for backward
compatibility, and should always be set to
true

CK_SESSION_INFO_PTR is a pointer to a CK_SESSION_INFO.

9.4 Object types

Cryptoki represents object information with the following types:

¢ CK OBJECT _HANDLE; CK_OBJECT_HANDLE PTR

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as
follows:

t ypedef CK _ULONG CK_OBJECT_HANDLE;

When an object is created or found on a token by an application, Cryptoki assigns it an
object handle for that application’s sessions to use to access it. A particular object on a
token does not necessarily have a handle which is fixed for the lifetime of the object;
however, if a particular session can use a particular handle to access a particular object,
then that session will continue to be able to use that handle to access that object as long
as the session continues to exist, the object continues to exist, and the object continues to
be accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers’
convenience, Cryptoki defines the following symbolic value:

CK_| NVALI D_HANDLE

CK_OBJECT_HANDLE PTR is a pointer to a CK_OBJECT_HANDLE.

¢ CK_OBJECT_CLASS; CK_OBJECT CLASS_PTR

CK _OBJECT_CLASS is a value that identifies the classes (or types) of objects that
Cryptoki recognizes. It is defined as follows:

t ypedef CK_ULONG CK_OBJECT CLASS:;

Copyright © 2004 RSA Security Inc. June 2004



9. GENERAL DATA TYPES 49

Object classes are defined with the objects that use them. The type is specified on an
object through the CKA CLASS attribute of the object.

Vendor defined values for this type may also be specified.

CKO_VENDCR_ DEFI NED

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their object classes through
the PKCS process.

CK_OBJECT_CLASS_PTR is a pointer to a CK_OBJECT_CLASS.

¢ CK_HW_FEATURE_TYPE

CK_HW_FEATURE_TYPE is a value that identifies a hardware feature type of a
device. It is defined as follows:

typedef CK_ULONG CK_HW FEATURE TYPE;

Hardware feature types are defined with the objects that use them. The type is specified
on an object through the CKA HW_ FEATURE TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKH_VENDOR _DEFI NED

Feature types CKH_VENDOR _DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their feature types through
the PKCS process.
¢ CK KEY_TYPE
CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:

t ypedef CK_ULONG CK_KEY_TYPE;

Key types are defined with the objects and mechanisms that use them. The key type is
specified on an object through the CKA KEY TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKK_VENDCR_DEFI NED

June 2004 Copyright © 2004 RSA Security Inc.



50 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their key types through the PKCS
process.

¢ CK _CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as
follows:

typedef CK_ULONG CK_CERTI FI CATE_TYPE;

Certificate types are defined with the objects and mechanisms that use them. The
certificate type is specified on an object through the CKA CERTIFICATE TYPE
attribute of the object.

Vendor defined values for this type may also be specified.

CKC_VENDCR_DEFI NED

Certificate types CKC_VENDOR DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their certificate types
through the PKCS process.

¢ CK ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as
follows:

t ypedef CK_ULONG CK_ATTRI BUTE_ TYPE;

Attributes are defined with the objects and mechanisms that use them. Attributes are
specified on an object as a list of type, length value items. These are often specified as an
attribute template.

Vendor defined values for this type may also be specified.

CKA VENDOR DEFI NED

Attribute types CKA_VENDOR DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their attribute types through
the PKCS process.

Copyright © 2004 RSA Security Inc. June 2004



9. GENERAL DATA TYPES 51

¢ CK ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is a structure that includes the type, value, and length of an attribute.
It is defined as follows:

typedef struct CK _ATTRI BUTE {
CK_ATTRI BUTE_TYPE t ype;
CK_VA D _PTR pVal ue;
CK_ULONG ul Val uelLen;

} CK_ATTRI BUTE;

The fields of the structure have the following meanings:
type  the attribute type
pValue  pointer to the value of the attribute
ulValuelen length in bytes of the value

If an attribute has no value, then u/ValueLen = 0, and the value of pValue is irrelevant.
An array of CK_ATTRIBUTEs is called a “template” and is used for creating,
manipulating and searching for objects. The order of the attributes in a template never
matters, even if the template contains vendor-specific attributes. Note that pValue is a
“void” pointer, facilitating the passing of arbitrary values. Both the application and
Cryptoki library must ensure that the pointer can be safely cast to the expected type (i.e.,
without word-alignment errors).

CK_ATTRIBUTE_PTR is a pointer to a CK_ATTRIBUTE.

¢+ CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:
typedef struct CK DATE {
CK_CHAR year|[4];
CK_CHAR nont h[ 2] ;
CK_CHAR day[ 2] ;
} CK_DATE;
The fields of the structure have the following meanings:
year  the year (“1900” - ©“9999”)
month  the month (“01” - “12”)

day  the day (“01” - “317)

June 2004 Copyright © 2004 RSA Security Inc.



52 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The fields hold numeric characters from the character set in Table 3, not the literal byte
values.

When a Cryptoki object carries an attribute of this type, and the default value of the
attribute is specified to be "empty," then Cryptoki libraries shall set the attribute's
ulValueLen to 0.

Note that implementations of previous versions of Cryptoki may have used other
methods to identify an "empty" attribute of type CK DATE, and that applications that
needs to interoperate with these libraries therefore have to be flexible in what they accept
as an empty value.

9.5  Data types for mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to
them:

¢ CK _MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as
follows:

t ypedef CK_ULONG CK_MECHANI SM TYPE;

Mechanism types are defined with the objects and mechanism descriptions that use them.

Vendor defined values for this type may also be specified.

CKM_VENDCR_DEFI NED

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their mechanism types
through the PKCS process.

CK_MECHANISM_TYPE_PTR is a pointer to a CK_MECHANISM_TYPE.

¢ CK _MECHANISM; CK_MECHANISM_PTR

CK_MECHANISM is a structure that specifies a particular mechanism and any
parameters it requires. It is defined as follows:

t ypedef struct CK_MECHANI SM {
CK_MECHANI SM TYPE nechani sm
CK_VO D_PTR pPar anet er;
CK_ULONG ul Par anet er Len;

} CK_MECHANI SM

Copyright © 2004 RSA Security Inc. June 2004



9. GENERAL DATA TYPES 53

The fields of the structure have the following meanings:
mechanism the type of mechanism
pParameter  pointer to the parameter if required by the mechanism
ulParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values.
Both the application and the Cryptoki library must ensure that the pointer can be safely
cast to the expected type (i.e., without word-alignment errors).

CK_MECHANISM_PTR is a pointer to a CK_MECHANISM.

¢+ CK MECHANISM_INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM _INFO is a structure that provides information about a particular
mechanism. It is defined as follows:

t ypedef struct CK _MECHANI SM I NFO {
CK_ULONG ul M nKeySi ze;
CK_ULONG ul MaxKeySi ze;
CK_FLAGS f 1 ags;

} CK_MECHANI SM | NFO

The fields of the structure have the following meanings:

ulMinKeySize  the minimum size of the key for the mechanism
(whether this is measured in bits or in bytes is
mechanism-dependent)

ulMaxKeySize the maximum size of the key for the mechanism
(whether this is measured in bits or in bytes is
mechanism-dependent)

flags bit flags specifying mechanism capabilities

For some mechanisms, the u/MinKeySize and ulMaxKeySize fields have meaningless
values.

June 2004 Copyright © 2004 RSA Security Inc.



54 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following table defines the flags field:

Table 13, Mechanism Information Flags

Bit Flag Mask Meaning

CKF _HW 0x00000001 | True if the mechanism is performed
by the device; false if the
mechanism is performed in software

CKF_ENCRYPT 0x00000100 | True if the mechanism can be used
with C_EncryptlInit

CKF DECRYPT 0x00000200 | True if the mechanism can be used
with C_DecryptlInit

CKF_DIGEST 0x00000400 | True if the mechanism can be used
with C_DigestInit

CKF_SIGN 0x00000800 | True if the mechanism can be used
with C_SignlInit

CKF_SIGN RECOVER 0x00001000 | True if the mechanism can be used
with C_SignRecoverlnit

CKF_VERIFY 0x00002000 | True if the mechanism can be used
with C_Verifylnit

CKF_VERIFY RECOVER 0x00004000 | True if the mechanism can be used
with C_VerifyRecoverlnit

CKF GENERATE 0x00008000 | True if the mechanism can be used
with C_GenerateKey

CKF_GENERATE KEY PAIR | 0x00010000 | True if the mechanism can be used
with C_GenerateKeyPair

CKF_WRAP 0x00020000 | True if the mechanism can be used
with C_WrapKey

CKF _UNWRAP 0x00040000 | True if the mechanism can be used
with C_UnwrapKey

CKF DERIVE 0x00080000 | True if the mechanism can be used
with C_DeriveKey

CKF_EXTENSION 0x80000000 | True if there is an extension to the

flags; false if no extensions. Must
be false for this version.

CK_MECHANISM_INFO_PTR is a pointer to a CK_MECHANISM_INFO.

9.6  Function types

Cryptoki represents information about functions with the following data types:

Copyright © 2004 RSA Security Inc.

June 2004




9. GENERAL DATA TYPES 55

¢ CK_RV

CK_RV is a value that identifies the return value of a Cryptoki function. It is defined as
follows:

typedef CK_ULONG CK RV,

Vendor defined values for this type may also be specified.

CKR_VENDOR _DEFI NED

Section 11.1 defines the meaning of each CK RV value. Return values
CKR_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their return values through the PKCS
process.

¢ CK NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform
notification callbacks. It is defined as follows:

t ypedef CK_CALLBACK FUNCTI ON( CK_RV, CK_NOTI FY) (
CK_SESSI ON_ HANDLE hSessi on,
CK_NOTI FI CATI ON event,
CK_VA D_PTR pApplication

)
The arguments to a notification callback function have the following meanings:
hSession  The handle of the session performing the callback
event The type of notification callback

pApplication An application-defined value. This is the same value
as was passed to C_OpenSession to open the session
performing the callback

¢ CK C_XXX

Cryptoki also defines an entire family of other function pointer types. For each function
C_XXX in the Cryptoki API (see Section 10.12 for detailed information about each of
them), Cryptoki defines a type CK_C_XXX, which is a pointer to a function with the
same arguments and return value as C_XXX has. An appropriately-set variable of type
CK_C_XXX may be used by an application to call the Cryptoki function C_XXX.

June 2004 Copyright © 2004 RSA Security Inc.



56 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK FUNCTION_LIST; CK_FUNCTION_LIST PTR;
CK_FUNCTION_LIST_PTR_PTR

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function
pointer to each function in the Cryptoki API. It is defined as follows:

t ypedef struct CK _FUNCTI ON_LI ST {
CK_VERSI ON ver si on;
CK Clnitialize Clnitialize;
CK_C Finalize C Finalize;
. GetInfo C CGetlnfo;
t Functi onLi st C _Get Functi onlLi st;
tSlotList C GetSlotlList;
tSlotlnfo C GetSlotlnfo;
t Tokenl nfo C _Get Tokenl nf o;
t Mechani snLi st C_Get Mechani snii st ;
t Mechani sm nfo C_Get Mechani sm nf o;
i t Token C_InitToken;
itPIN C.InitPIN,
tPIN C SetPIN
enSessi on C_OpenSessi on;
oseSessi on C_Cl oseSessi on;
oseAl | Sessions C C oseAl | Sessi ons;
t Sessi onl nfo C_Get Sessi onl nf 0;
t OperationState C CGet OQperati onSt at e;
t Oper ationState C_Set QperationStat e;
gin C_Login;
gout C_Logout;
eat e(bj ect C Create(bj ect;
pyObj ect C CopyObj ect ;
stroyQbj ect C Dest royOoj ect;
t Obj ect Si ze C_Get Obj ect Si ze;
tAttri buteValue C Get Attri buteVal ue;
et Attri buteVal ue C Set Attri buteVal ue;
i ndQbj ectslnit C FindObjectslnit;
i ndObj ects C_Fi ndObj ect s;
i ndObj ect sFi nal C_Fi ndij ect sFi nal ;
ncryptlinit C Encryptlinit;
ncrypt C Encrypt;
ncrypt Updat e C Encrypt Updat e;
ncrypt Fi nal C_EncryptFi nal ;
cryptinit C Decryptlnit;
crypt C Decrypt;
crypt Updat e C Decrypt Updat e;
crypt Final C_DecryptFi nal ;
i gestinit C Digestlnit;
i gest C _Di gest;
i gest Updat e C_Di gest Updat e;
i gest Key C _Di gest Key;

R

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

2022200029

Q@QQQSS%Q@QQQQSEQ@@@Q@

22092000020009220002200022000
I'|'||'|'II'|'II'I'I'I'I'I'I'I'I(I)

DDDDQQQQ

Copyright © 2004 RSA Security Inc. June 2004



9. GENERAL DATA TYPES 57

Q

i gest Final C.Di gest Fi nal ;

ignlnit C Signlnit;

ign C_Sign;

i gnUpdat e C_Si gnUpdat e;

i gnFi nal C_Si gnFi nal ;

i gnRecoverlnit C Si gnRecoverI nit;

i gnRecover C_ Si gnRecover

erifylnit C Verifylnit;

erify C Verify;

eri fyUpdate C VerifyUpdate;

erifyFinal C VerifyFinal;

erifyRecoverlnit C Veri fyRecoverI nit;

er| fyRecover C VerifyRecover;

gest Encrypt Updat e C Di gest Encrypt Updat e;
crypt Di gest Updat e C_Decrypt Di gest Updat e;
> Si gnEncrypt Update C_Si gnEncrypt Updat e;
crypt Veri fyUpdate C _Decrypt Veri fyUpdat e;
ner at eKey C _CGener at eKey;

ner at eKeyPal r C _Generat eKeyPair;

apKey C:VVapKey,

wr apKey C _Unwr apKey;

ri vekKey C DeriveKey;

edRandom C_SeedRandom

ner at eRandom C_Gener at eRandom

t FunctionStatus C_Get Functi onSt at us;
ncel Function C_Cancel Functi on;

_C Wi t For Sl ot Event C Wi t For Sl ot Event ;

} CK_FUNCTI ON_LI ST;

mmmmm@

<<

<<<

QD

OOOOOOOOOOOOOOOOOOOOOOOOOO
(/) <

9QgggggggggggQQQQQQQggggggg
0RPERT00F

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it
(or to a copy of it which is also owned by the library) may be obtained by the
C_GetFunctionList function (see Section 11.2). The value that this pointer points to can
be used by an application to quickly find out where the executable code for each function
in the Cryptoki API is located. Every function in the Cryptoki API must have an entry
point defined in the Cryptoki library’s CK_FUNCTION_LIST structure. 1f a particular
function in the Cryptoki API is not supported by a library, then the function pointer for
that function in the library’s CK_FUNCTION_LIST structure should point to a function
stub which simply returns CKR_FUNCTION NOT_SUPPORTED.

An application may or may not be able to modify a Cryptoki library’s static
CK _FUNCTION_LIST structure. Whether or not it can, it should never attempt to do
SO.

CK_FUNCTION_LIST_PTR is a pointer to a CK_FUNCTION_LIST.

CK_FUNCTION_LIST PTR_PTR is a pointer to a CK_FUNCTION_LIST PTR.

June 2004 Copyright © 2004 RSA Security Inc.



58 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

9.7  Locking-related types

The types in this section are provided solely for applications which need to access
Cryptoki from multiple threads simultaneously. Applications which will not do this need
not use any of these types.

¢ CK CREATEMUTEX

CK CREATEMUTEX is the type of a pointer to an application-supplied function
which creates a new mutex object and returns a pointer to it. It is defined as follows:

t ypedef CK_CALLBACK FUNCTI ON( CK_RV, CK_CREATEMUTEX) (
CK_VO D PTR_PTR ppMit ex

);

Calling a CK_CREATEMUTEX function returns the pointer to the new mutex object in
the location pointed to by ppMutex. Such a function should return one of the following
values: CKR_OK, CKR_GENERAL ERROR, CKR HOST MEMORY.

¢ CK DESTROYMUTEX

CK DESTROYMUTEX is the type of a pointer to an application-supplied function
which destroys an existing mutex object. It is defined as follows:

t ypedef CK_CALLBACK FUNCTI ON( CK_RV, CK_ DESTROYMUTEX) (
CK_VO D _PTR pMit ex
)i

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to
be destroyed. Such a function should return one of the following values: CKR OK,
CKR GENERAL ERROR, CKR HOST MEMORY, CKR MUTEX BAD.

¢ CK LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX is the type of a pointer to an application-supplied function which
locks an existing mutex object. CK_UNLOCKMUTEX is the type of a pointer to an
application-supplied function which unlocks an existing mutex object. The proper
behavior for these types of functions is as follows:

 If a CK_LOCKMUTEX function is called on a mutex which is not locked, the
calling thread obtains a lock on that mutex and returns.

 If a CK_LOCKMUTEX function is called on a mutex which is locked by some
thread other than the calling thread, the calling thread blocks and waits for that mutex
to be unlocked.

Copyright © 2004 RSA Security Inc. June 2004



9. GENERAL DATA TYPES 59

 Ifa CK LOCKMUTEX function is called on a mutex which is locked by the calling
thread, the behavior of the function call is undefined.

* [If a CK_UNLOCKMUTEX function is called on a mutex which is locked by the
calling thread, that mutex is unlocked and the function call returns. Furthermore:

» If exactly one thread was blocking on that particular mutex, then that thread stops
blocking, obtains a lock on that mutex, and its CK_ LOCKMUTEX call returns.

e If more than one thread was blocking on that particular mutex, then exactly one of
the blocking threads is selected somehow. That lucky thread stops blocking,
obtains a lock on the mutex, and its CK_LOCKMUTEX call returns. All other
threads blocking on that particular mutex continue to block.

* Ifa CK_UNLOCKMUTEX function is called on a mutex which is not locked, then
the function call returns the error code CKR. MUTEX NOT LOCKED.

* Ifa CK_UNLOCKMUTEX function is called on a mutex which is locked by some
thread other than the calling thread, the behavior of the function call is undefined.

CK_LOCKMUTEX is defined as follows:

t ypedef CK_CALLBACK_FUNCTI ON( CK_RV, CK_LOCKMUTEX) (
CK_VO D_PTR pMit ex
)

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be
locked. Such a function should return one of the following values: CKR OK,
CKR GENERAL ERROR, CKR HOST MEMORY, CKR MUTEX BAD.

CK_UNLOCKMUTEX is defined as follows:

t ypedef CK_CALLBACK_FUNCTI ON( CK_RV, CK_UNLOCKMUTEX) (
CK_VO D_PTR pMit ex

);

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to
be unlocked. Such a function should return one of the following values: CKR OK,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR _MUTEX BAD,
CKR MUTEX NOT LOCKED.

June 2004 Copyright © 2004 RSA Security Inc.



60 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK _C_INITIALIZE_ARGS; CK_C_INITIALIZE ARGS PTR

CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the
C_Initialize function. For this version of Cryptoki, these optional arguments are all
concerned with the way the library deals with threads. CK_C_INITIALIZE_ARGS is
defined as follows:

typedef struct CK C I N TIALI ZE _ARGS {
CK_CREATEMUTEX Cr eat eMut ex;
CK_DESTROYMUTEX Dest r oyMut ex;
CK_LOCKMUTEX LockMuit ex;
CK_UNLOCKMUTEX Unl ockMut ex;
CK_FLAGS f | ags;
CK_VA D _PTR pReserved;

} CK_C_INTIALI ZE_ARGS;

The fields of the structure have the following meanings:
CreateMutex  pointer to a function to use for creating mutex objects

DestroyMutex  pointer to a function to use for destroying mutex
objects

LockMutex  pointer to a function to use for locking mutex objects

UnlockMutex  pointer to a function to use for unlocking mutex
objects

flags bit flags specifying options for C_Initialize; the flags
are defined below

pReserved  reserved for future use. Should be NULL PTR for this
version of Cryptoki

Copyright © 2004 RSA Security Inc. June 2004



9. GENERAL DATA TYPES 61

The following table defines the flags field:

Table 14, C_Initialize Parameter Flags

Bit Flag Mask Meaning

CKF LIBRARY CANT CREATE OS THREADS | 0x00000001 | True if
application
threads which

are executing
calls to the
library may not
use native
operating system
calls to spawn
new threads;
false if they may

CKF_OS_LOCKING OK 0x00000002 | True if the
library can use
the native
operation system
threading model
for locking; false
otherwise

CK_C_INITIALIZE_ARGS_PTR is a pointer to a CK_C_INITIALIZE_ARGS.

June 2004 Copyright © 2004 RSA Security Inc.



62 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10  Objects

Cryptoki recognizes a number of classes of objects, as defined in the
CK _OBJECT_CLASS data type. An object consists of a set of attributes, each of
which has a given value. Each attribute that an object possesses has precisely one value.
The following figure illustrates the high-level hierarchy of the Cryptoki objects and some
of the attributes they support:

Object
Class
Storage Hardware feature Mechanism
Feature type Mechanism type
Token
Private
k/labde'll" o Domain
odifiable
> parameters
Data Key
Application
Object Identifier
Value Certificate

Figure 5, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in general, and
for obtaining and modifying the values of their attributes. Some of the cryptographic
functions (e.g., C_GenerateKey) also create key objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains all
required attributes, and the attributes are always consistent with one another from the
time the object is created. This contrasts with some object-based paradigms where an
object has no attributes other than perhaps a class when it is created, and is uninitialized
for some time. In Cryptoki, objects are always initialized.

Tables throughout most of Section 10 define each Cryptoki attribute in terms of the data
type of the attribute value and the meaning of the attribute, which may include a default
initial value. Some of the data types are defined explicitly by Cryptoki (e.g.,
CK_OBJECT_CLASS). Attribute values may also take the following types:

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS 63

Byte array an arbitrary string (array) of CK_BYTEs

Big integer  a string of CK_BYTEs representing an unsigned
integer of arbitrary size, most-significant byte first
(e.g., the integer 32768 is represented as the 2-byte
string 0x80 0x00)

Local string an unpadded string of CK_CHARSs (see Table 3) with
no null-termination

RFC22709 string an unpadded string of CK_UTF8CHARs with no null-
termination

A token can hold several identical objects, i.e., it is permissible for two or more objects to
have exactly the same values for all their attributes.

In most cases each type of object in the Cryptoki specification possesses a completely
well-defined set of Cryptoki attributes. Some of these attributes possess default values,
and need not be specified when creating an object; some of these default values may even
be the empty string (“”’). Nonetheless, the object possesses these attributes. A given
object has a single value for each attribute it possesses, even if the attribute is a vendor-
specific attribute whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-
specific attributes whose meanings and values are not specified by Cryptoki.

10.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their
arguments, where the template specifies attribute values. Cryptographic functions that
create objects (see Section 11.14) may also contribute some additional attribute values
themselves; which attributes have values contributed by a cryptographic function call
depends on which cryptographic mechanism is being performed (see Section 12). In any
case, all the required attributes supported by an object class that do not have default
values must be specified when an object is created, either in the template or by the
function itself.

10.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 11.7),
C _GenerateKey, C_GenerateKeyPair, C UnwrapKey, and C DeriveKey (see
Section 11.14). In addition, copying an existing object (with the function
C_CopyObject) also creates a new object, but we consider this type of object creation
separately in Section 10.1.3.

June 2004 Copyright © 2004 RSA Security Inc.



64 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attempting to create an object with any of these functions requires an appropriate
template to be supplied.

1. If the supplied template specifies a value for an invalid attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE TYPE INVALID. An attribute
is valid if it is either one of the attributes described in the Cryptoki specification or an
additional vendor-specific attribute supported by the library and token.

2. If the supplied template specifies an invalid value for a valid attribute, then the
attempt should fail with the error code CKR ATTRIBUTE VALUE INVALID.
The valid values for Cryptoki attributes are described in the Cryptoki specification.

3. If the supplied template specifies a value for a read-only attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE READ ONLY. Whether or not a
given Cryptoki attribute is read-only is explicitly stated in the Cryptoki specification;
however, a particular library and token may be even more restrictive than Cryptoki
specifies. In other words, an attribute which Cryptoki says is not read-only may
nonetheless be read-only under certain circumstances (i.e., in conjunction with some
combinations of other attributes) for a particular library and token. Whether or not a
given non-Cryptoki attribute is read-only is obviously outside the scope of Cryptoki.

4. If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are insufficient to fully specify the object to create, then the attempt
should fail with the error code CKR. TEMPLATE INCOMPLETE.

5. If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are inconsistent, then the attempt should fail with the error code
CKR TEMPLATE INCONSISTENT. A set of attribute values is inconsistent if not
all of its members can be satisfied simultaneously by the token, although each value
individually is valid in Cryptoki. One example of an inconsistent template would be
using a template which specifies two different values for the same attribute. Another
example would be trying to create a secret key object with an attribute which is
appropriate for various types of public keys or private keys, but not for secret keys.
A final example would be a template with an attribute that violates some token
specific requirement. Note that this final example of an inconsistent template is
token-dependent—on a different token, such a template might not be inconsistent.

6. If the supplied template specifies the same value for a particular attribute more than
once (or the template specifies the same value for a particular attribute that the object-
creation function itself contributes to the object), then the behavior of Cryptoki is not
completely specified. The attempt to create an object can either succeed—thereby
creating the same object that would have been created if the multiply-specified
attribute had only appeared once—or it can fail with error code
CKR TEMPLATE INCONSISTENT. Library developers are encouraged to make
their libraries behave as though the attribute had only appeared once in the template;

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS 65

application developers are strongly encouraged never to put a particular attribute into
a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object,
then the error code returned from the attempt can be any of the error codes from above
that applies.

10.1.2 Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section
11.7). The template supplied to C_SetAttributeValue can contain new values for
attributes which the object already possesses; values for attributes which the object does
not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some
may not. In addition, attributes which Cryptoki specifies are modifiable may actually not
be modifiable on some tokens. That is, if a Cryptoki attribute is described as being
modifiable, that really means only that it is modifiable insofar as the Cryptoki
specification is concerned. A particular token might not actually support modification of
some such attributes. Furthermore, whether or not a particular attribute of an object on a
particular token is modifiable might depend on the values of certain attributes of the
object. For example, a secret key object’s CKA_SENSITIVE attribute can be changed
from CK_FALSE to CK_TRUE, but not the other way around.

All the scenarios in Section 10.1.1—and the error codes they return—apply to modifying
objects with C_SetAttributeValue, except for the possibility of a template being
incomplete.

10.1.3 Copying objects

Objects may be copied with the Cryptoki function C_CopyObject (see Section 11.7). In
the process of copying an object, C_CopyObject also modifies the attributes of the
newly-created copy according to an application-supplied template.

The Cryptoki attributes which can be modified during the course of a C_CopyObject
operation are the same as the Cryptoki attributes which are described as being
modifiable, plus the three special attributes CKA TOKEN, CKA PRIVATE, and
CKA MODIFIABLE. To be more precise, these attributes are modifiable during the
course of a C_CopyODbject operation insofar as the Cryptoki specification is concerned.
A particular token might not actually support modification of some such attributes during
the course of a C_CopyObject operation. Furthermore, whether or not a particular
attribute of an object on a particular token is modifiable during the course of a
C_CopyObject operation might depend on the values of certain attributes of the object.
For example, a secret key object’s CKA_SENSITIVE attribute can be changed from

June 2004 Copyright © 2004 RSA Security Inc.



66 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK FALSE to CK_TRUE during the course of a C_CopyObject operation, but not the
other way around.

All the scenarios in Section 10.1.1—and the error codes they return—apply to copying
objects with C_CopyObject, except for the possibility of a template being incomplete.

10.2 Common attributes

Table 15, Common footnotes for object attribute tables

"' Must be specified when object is created with C_CreateObject.
? Must not be specified when object is created with C_CreateObject.

’ Must be specified when object is generated with C_GenerateKey or
C_GenerateKeyPair.

* Must not be specified when object is generated with C_GenerateKey or
C_GenerateKeyPair.

> Must be specified when object is unwrapped with C_UnwrapKey.
% Must not be specified when object is unwrapped with C_UnwrapKey.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to CK_TRUE or
its CKA_EXTRACTABLE attribute set to CK_FALSE.

¥ May be modified after object is created with a C_SetAttributeValue call, or in the
process of copying object with a C_CopyObject call. However, it is possible that a
particular token may not permit modification of the attribute during the course of a
C_CopyObject call.

? Default value is token-specific, and may depend on the values of other attributes.
19 Can only be set to CK_TRUE by the SO user.
' Attribute cannot be changed once set to CK_TRUE. It becomes a read only attribute.

"2 Attribute cannot be changed once set to CK_FALSE. It becomes a read only
attribute.

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS 67

Table 16, Common Object Attributes

Attribute Data Type Meaning

CKA_CLASS' CK_OBJECT_CLASS | Object class (type)

“Refer to table Table 15 for footnotes

The above table defines the attributes common to all objects.

10.3 Hardware Feature Objects

10.3.1 Definitions

This section defines the object class CKO HW FEATURE for type
CK OBJECT_CLASS as used in the CKA CLASS attribute of objects.

10.3.2 Overview

Hardware feature objects (CKO_HW_FEATURE) represent features of the device.
They provide an easily expandable method for introducing new value-based features to
the cryptoki interface.

When searching for objects using C_FindObjectsInit and C_FindObjects, hardware
feature objects are not returned unless the CKA CLASS attribute in the template has the
value CKO_HW_FEATURE. This protects applications written to previous versions of
cryptoki from finding objects that they do not understand.

Table 17, Hardware Feature Common Attributes

Attribute Data Type Meaning

CKA HW FEATURE TYPE' | CK_HW FEATURE | Hardware feature (type)

“Refer to table Table 15 for footnotes

10.3.3 Clock

10.3.3.1 Definition

The CKA_HW_FEATURE _TYPE attribute takes the value CKH_CLOCK of type
CK_HW_FEATURE.

June 2004 Copyright © 2004 RSA Security Inc.



68 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.3.3.2 Description

Clock objects represent real-time clocks that exist on the device. This represents the same
clock source as the utcTime field in the CK_TOKEN_ INFO structure.

Table 18, Clock Object Attributes

Attribute Data Type Meaning

CKA_VALUE | CK CHARJ16] | Current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx
(4 characters for the year; 2 characters each for the
month, the day, the hour, the minute, and the
second; and 2 additional reserved ‘0’ characters).

The CKA _VALUE attribute may be set using the C_SetAttributeValue function if
permitted by the device. The session used to set the time must be logged in. The device
may require the SO to be the user logged in to modify the time value.
C_SetAttributeValue will return the error CKR_USER NOT LOGGED IN to indicate
that a different user type is required to set the value.

10.3.4 Monotonic Counter Objects

10.3.4.1 Definition

The CKA_HW_FEATURE_TYPE attribute takes the value
CKH_MONOTONIC_COUNTER of type CK_HW_FEATURE.

10.3.4.2 Description

Monotonic counter objects represent hardware counters that exist on the device. The
counter is guaranteed to increase each time its value is read, but not necessarily by one.
This might be used by an application for generating serial numbers to get some assurance
of uniqueness per token.

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS 69

Table 19, Monotonic Counter Attributes

Attribute Data Type Meaning

CKA_RESET ON_INIT' | CK BBOOL | The value of the counter will reset to a
previously returned value if the token is
initialized using C_InitializeToken.

CKA HAS RESET' CK BBOOL | The value of the counter has been reset at
least once at some point in time.

CKA VALUE' Byte Array The current version of the monotonic
counter. The value is returned in big endian
order.

'Read Only

The CKA_VALUE attribute may not be set by the client.

10.3.5 User Interface Objects

10.3.5.1 Definition

The CKA_HW_FEATURE_TYPE attribute takes the value
CKH_USER_INTERFACE of type CK_HW_FEATURE.

10.3.5.2 Description

User interface objects represent the presentation capabilities of the device.

June 2004 Copyright © 2004 RSA Security Inc.



70 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 20, User Interface Object Attributes

Attribute Data type Meaning
CKA PIXEL X CK _ULONG | Screen resolution (in pixels) in X-axis
(e.g. 1280)
CKA PIXEL Y CK _ULONG | Screen resolution (in pixels) in Y-axis
(e.g. 1024)
CKA_ RESOLUTION CK ULONG | DPI, pixels per inch
CKA _CHAR ROWS CK_ULONG | For character-oriented displays;
number of character rows (e.g. 24)
CKA CHAR COLUMNS CK _ULONG | For character-oriented displays:
number of character columns (e.g.
80). If display is of proportional-font
type, this is the width of the display in
“em”-s (letter “M”), see CC/PP
Struct.
CKA COLOR CK BBOOL | Color support
CKA_ BITS PER PIXEL CK _ULONG | The number of bits of color or
grayscale information per pixel.
CKA CHAR SETS RFC 2279 String indicating supported character
string sets, as defined by TANA MIBenum
sets (www.iana.org). Supported
character sets are separated with “;”.
E.g. a token supporting is0-8859-1
and us-ascii would set the attribute
value to “4; 3.
CKA_ENCODING_METHODS | RFC 2279 String indicating supported content
string transfer encoding methods, as defined
by IANA (www.iana.org). Supported
methods are separated with “;”. E.g. a
token supporting 7bit, 8bit and
base64 could set the attribute value to
“Tbi t; 8bit; base64”.
CKA MIME TYPES RFC 2279 String indicating supported
string (presentable) MIME-types, as defined

by IANA (www.iana.org). Supported
types are separated with “;”. E.g. a
token supporting MIME types "a/b",
"a/c" and "a/d" would set the attribute
value to “a/ b; a/ c; a/ d”.

The selection of attributes, and associated data types, has been done in an attempt to stay
as aligned with RFC 2534 and CC/PP Struct as possible. The special value

Copyright © 2004 RSA Security Inc.

June 2004




10. OBJECTS 71

CK UNAVAILABLE INFORMATION may be used for CK_ULONG-based attributes
when information is not available or applicable.

None of the attribute values may be set by an application.

The value of the CKA ENCODING METHODS attribute may be used when the
application needs to send MIME objects with encoded content to the token.

10.4 Storage Objects

This is not an object class, hence no CKO definition is required. It is a category of
object classes with common attributes for the object classes that follow.

Table 21, Common Storage Object Attributes

Attribute Data Type Meaning

CKA TOKEN CK_BBOOL CK TRUE if object is a token object;
CK _FALSE if object is a session
object. Default is CK_FALSE.

CKA PRIVATE CK_BBOOL CK TRUE if object is a private
object; CK_FALSE if object is a
public object. Default value is token-
specific, and may depend on the
values of other attributes of the object.

CKA MODIFIABLE | CK_BBOOL CK TRUE if object can be modified
Default is CK_TRUE.

CKA LABEL RFC22709 string Description of the object (default
empty).

Only the CKA LABEL attribute can be modified after the object is created. (The
CKA _TOKEN, CKA PRIVATE, and CKA_MODIFIABLE attributes can be changed
in the process of copying an object, however.)

The CKA_TOKEN attribute identifies whether the object is a token object or a session
object.

When the CKA_PRIVATE attribute is CK_TRUE, a user may not access the object
until the user has been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is
read-only. It may or may not be the case that an unmodifiable object can be deleted.

The CKA_LABEL attribute is intended to assist users in browsing.

June 2004 Copyright © 2004 RSA Security Inc.



72 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.5 Data objects

10.5.1 Definitions

This section defines the object class CKO DATA for type CK_OBJECT CLASS as used
in the CKA CLASS attribute of objects.

10.5.2 Overview

Data objects (object class CKO_DATA) hold information defined by an application.
Other than providing access to it, Cryptoki does not attach any special meaning to a data
object. The following table lists the attributes supported by data objects, in addition to the
common attributes defined for this object class:

Table 22, Data Object Attributes

Attribute Data type | Meaning
CKA APPLICATION | RFC2279 | Description of the application that manages the
string object (default empty)

CKA OBIJECT ID Byte Array | DER-encoding of the object identifier indicating
the data object type (default empty)

CKA VALUE Byte array | Value of the object (default empty)

The CKA_APPLICATION attribute provides a means for applications to indicate
ownership of the data objects they manage. Cryptoki does not provide a means of
ensuring that only a particular application has access to a data object, however.

The CKA_OBJECT _ID attribute provides an application independent and expandable
way to indicate the type of the data object value. Cryptoki does not provide a means of
insuring that the data object identifier matches the data value.

The following is a sample template containing attributes for creating a data object:

CK_OBJECT_CLASS cl ass = CKO_DATA;
CK_UTF8CHAR | abel [] = “A data object”;
CK_UTF8CHAR application[] = “An application”;
CK _BYTE data[] = “Sanple data”;
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_APPLI CATI ON, application, sizeof(application)-1},
{CKA VALUE, data, sizeof(data)}
1

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS 73

10.6 Certificate objects

10.6.1 Definitions

This section defines the object class CKO CERTIFICATE for type
CK _OBJECT_CLASS as used in the CKA CLASS attribute of objects.

10.6.2 Overview

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute
certificates. Other than providing access to certificate objects, Cryptoki does not attach
any special meaning to certificates. The following table defines the common certificate
object attributes, in addition to the common attributes defined for this object class:

Table 23, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE TYPE' | CK_CERTIFICATE_TYPE | Type of certificate
CKA_TRUSTED'" CK_BBOOL The certificate can be

trusted for the application
that it was created.

CKA_CERTIFICATE_CATEGORY | CK_ULONG Categorization of the
certificate:

0 = unspecified (default
value), 1 = token user, 2 =
authority, 3 = other entity

CKA CHECK VALUE Byte array Checksum

CKA _START DATE CK _DATE Start date for the certificate
(default empty)

CKA END DATE CK DATE End date for the certificate
(default empty)

“Refer to table Table 15 for footnotes

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is
created. This version of Cryptoki supports the following certificate types:

*  X.509 public key certificate
*  WTLS public key certificate
*  X.509 attribute certificate

The CKA_TRUSTED attribute cannot be set to CK_TRUE by an application. It must be
set by a token initialization application or by the token’s SO. Trusted certificates cannot
be modified.

June 2004 Copyright © 2004 RSA Security Inc.



74 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The CKA_CERTIFICATE_CATEGORY attribute is used to indicate if a stored
certificate is a user certificate for which the corresponding private key is available on the
token (“token user”), a CA certificate (“authority’), or an other end-entity certificate
(“other entity”). This attribute may not be modified after an object is created.

The CKA_CERTIFICATE_CATEGORY and CKA_TRUSTED attributes will
together be used to map to the categorization of the certificates. A certificate in the
certificates CDF will be marked with category “token user”. A certificate in the
trustedCertificates CDF or in the usefulCertificates CDF will be marked with category
“authority” or “other entity” depending on the CommonCertificateAttribute.authority
attribute and the CKA_TRUSTED attribute indicates if it belongs to the
trustedCertificates or usefulCertificates CDF.

CKA_CHECK_VALUE: The value of this attribute is derived from the certificate by
taking the first three bytes of the SHA-1 hash of the certificate object’s CKA VALUE
attribute.

The CKA_START_DATE and CKA_END DATE attributes are for reference only;
Cryptoki does not attach any special meaning to them. When present, the application is
responsible to set them to values that match the certificate’s encoded “not before” and
“not after” fields (if any).

10.6.3 X.509 public key certificate objects

X.509 certificate objects (certificate type CKC X 509) hold X.509 public key
certificates. The following table defines the X.509 certificate object attributes, in
addition to the common attributes defined for this object class:

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS

Table 24, X.509 Certificate Object Attributes

_DOMAIN

Attribute Data type | Meaning

CKA_SUBJECT' Byte array | DER-encoding of the certificate
subject name

CKA ID Byte array | Key identifier for public/private
key pair (default empty)

CKA_ISSUER Byte array | DER-encoding of the certificate
issuer name (default empty)

CKA_SERIAL NUMBER Byte array | DER-encoding of the certificate
serial number (default empty)

CKA VALUE' Byte array | BER-encoding of the certificate

CKA URL’ RFC2279 | If not empty this attribute gives the

string URL where the complete

certificate can be obtained (default
empty)

CKA HASH OF SUBJECT | Byte array | SHA-I hash of the subject public

PUBLIC KEY* key (default empty)

CKA_HASH_OF_ISSUER_PUBLI | Byte array | SHA-1 hash of the issuer public

C_KEY* key (default empty)

CKA_JAVA_MIDP _SECURITY | CK_ULONG

Java MIDP security domain: 0 =
unspecified (default value), 1 =
manufacturer, 2 = operator, 3 =
third party

"Must be specified when the object is created.
*Must be specified when the object is created. Must be non-empty if CKA URL is empty.
*Must be non-empty if CKA VALUE is empty.
*Can only be empty if CKA_URL is empty.

75

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be
modified after the object is created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-
key/private-key pairs held by the same subject (whether stored in the same token or not).
(Since the keys are distinguished by subject name as well as identifier, it is possible that
keys for different subjects may have the same CKA_ID value without introducing any

ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier
for a certificate will be the same as those for the corresponding public and private keys
(though it is not required that all be stored in the same token). However, Cryptoki does

June 2004

Copyright © 2004 RSA Security Inc.



76 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

not enforce this association, or even the uniqueness of the key identifier for a given
subject; in particular, an application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with
PKCS #7 and Privacy Enhanced Mail (RFC1421). Note that with the version 3
extensions to X.509 certificates, the key identifier may be carried in the certificate. It is
intended that the CKA_ID value be identical to the key identifier in such a certificate
extension, although this will not be enforced by Cryptoki.

The CKA_URL attribute enables the support for storage of the URL where the certificate
can be found instead of the certificate itself. Storage of a URL instead of the complete
certificate is often used in mobile environments.

The CKA_HASH_OF _SUBJECT_PUBLIC_KEY and
CKA HASH_OF ISSUER _PUBLIC KEY attributes are used to store the hashes of
the public keys of the subject and the issuer. They are particularly important when only
the URL is available to be able to correlate a certificate with a private key and when
searching for the certificate of the issuer.

The CKA_JAVA_ _MIDP_SECURITY_DOMAIN attribute associates a certificate with
a Java MIDP security domain.

The following is a sample template for creating an X.509 certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC_X 509;
CK_UTF8CHAR | abel [] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK BYTE certificate[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{ CKA_CERTI FI CATE_TYPE, &cert Type, sizeof (certType)};
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, certificate, sizeof(certificate)}
3

10.6.4 WTLS public key certificate objects

WTLS certificate objects (certificate type CKC_WTLS) hold WTLS public key
certificates. The following table defines the WTLS certificate object attributes, in
addition to the common attributes defined for this object class.

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS 77

Table 25: WTLS Certificate Object Attributes

Attribute Data type Meaning

CKA_SUBJECT' Byte array WTLS-encoding (Identifier type)
of the certificate subject

CKA_ISSUER Byte array WTLS-encoding (Identifier type)
of the certificate issuer (default
empty)

CKA VALUE? Byte array WTLS-encoding of the certificate

CKA URL’ RFC2279 If not empty this attribute gives

string the URL where the complete

certificate can be obtained

CKA HASH OF SUBIJECT | Byte array SHA-1 hash of the subject public

_PUBLIC_KEY* key (default empty)

CKA HASH OF ISSUER P | Byte array SHA-1 hash of the issuer public

UBLIC_KEY* key (default empty)

'"Must be specified when the object is created. Can only be empty if CKA_VALUE is empty.
*Must be specified when the object is created. Must be non-empty if CKA_URL is empty.
*Must be non-empty if CKA_VALUE is empty.

*Can only be empty if CKA_URL is empty.

Only the CKA_ISSUER attribute may be modified after the object has been created.

The encoding for the CKA_SUBJECT, CKA_ISSUER, and CKA_VALUE attributes
can be found in [WTLS] (see References).

The CKA_URL attribute enables the support for storage of the URL where the certificate
can be found instead of the certificate itself. Storage of a URL instead of the complete
certificate is often used in mobile environments.

The CKA _HASH_OF _SUBJECT_PUBLIC_KEY and
CKA HASH_OF ISSUER _PUBLIC KEY attributes are used to store the hashes of
the public keys of the subject and the issuer. They are particularly important when only
the URL is available to be able to correlate a certificate with a private key and when
searching for the certificate of the issuer.

The following is a sample template for creating a WTLS certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC_WILS;
CK_UTF8CHAR | abel [] = “A certificate object”;
CK_BYTE subject[] ={...};

CK BYTE certificate[] = {...};

CK BBOOL true = CK TRUE;

CK_ATTRI BUTE tenpl ate[] =

{CKA CLASS, &cl ass, sizeof(class)},

{ CKA_CERTI FI CATE_TYPE, &cert Type, sizeof (certType)};
{CKA TOKEN, &true, sizeof(true)},

June 2004 Copyright © 2004 RSA Security Inc.



78 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{CKA LABEL, | abel, sizeof (I abel)-1},

{ CKA_SUBJECT, subject, sizeof(subject)},

{CKA VALUE, certificate, sizeof(certificate)}
3

10.6.5 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC_X 509 ATTR_CERT) hold
X.509 attribute certificates. The following table defines the X.509 attribute certificate
object attributes, in addition to the common attributes defined for this object class:

Table 26, X.509 Attribute Certificate Object Attributes

Attribute Data Type | Meaning

CKA_OWNER' Byte Array | DER-encoding of the attribute certificate's
subject field. This is distinct from the
CKA_SUBJECT attribute contained in
CKC X 5009 certificates because the ASN.1
syntax and encoding are different.

CKA AC ISSUER Byte Array | DER-encoding of the attribute certificate's
issuer field. This is distinct from the
CKA_ISSUER attribute contained in
CKC X 5009 certificates because the ASN.1
syntax and encoding are different. (default

empty)

CKA SERIAL NUMBER | Byte Array | DER-encoding of the certificate serial number.
(default empty)

CKA ATTR TYPES Byte Array | BER-encoding of a sequence of object

identifier values corresponding to the attribute
types contained in the certificate. When
present, this field offers an opportunity for
applications to search for a particular attribute
certificate without fetching and parsing the
certificate itself. (default empty)

CKA VALUE' Byte Array | BER-encoding of the certificate.
"Must be specified when the object is created

Only the CKA_AC_ISSUER, CKA_SERIAL_NUMBER and CKA_ATTR_TYPES
attributes may be modified after the object is created.

The following is a sample template for creating an X.509 attribute certificate object:

CK_OBJECT_CLASS cl ass = CKO _CERTI FI CATE

CK_CERTI FI CATE_TYPE cert Type = CKC X 509 ATTR CERT;
CK_UTF8CHAR | abel [] = "An attribute certificate object”;
CK_BYTE owner[] = {...};

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS 79

CK_BYTE certificate[] = {...};

CK BBOOL true = CK_TRUE;

CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{ CKA_CERTI FI CATE_TYPE, &cert Type, sizeof (certType)};
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_OMWNER, owner, si zeof (owner)},

{CKA VALUE, certificate, sizeof(certificate)}

b

10.7 Key objects

10.7.1 Definitions

There is no CKO _definition for the base key object class, only for the key types derived
from it.

This section defines the object class CKO PUBLIC KEY, CKO PRIVATE KEY and
CKO_SECRET KEY for type CK OBJECT CLASS as used in the CKA CLASS
attribute of objects.

10.7.2 Overview

Key objects hold encryption or authentication keys, which can be public keys, private
keys, or secret keys. The following common footnotes apply to all the tables describing
attributes of keys:

The following table defines the attributes common to public key, private key and secret
key classes, in addition to the common attributes defined for this object class:

Table 27, Common Key Attributes

Attribute Data Type Meaning

CKA _KEY TYPE'" CK_KEY TYPE | Type of key

CKA_ID" Byte array Key identifier for key (default empty)
CKA_START DATE® CK_DATE Start date for the key (default empty)
CKA END DATE® CK DATE End date for the key (default empty)
CKA_DERIVE® CK_BBOOL CK_TRUE if key supports key

derivation (i.e., if other keys can be

derived from this one (default

CK FALSE)

CKA LOCAL**® CK_BBOOL CK TRUE only if key was either

» generated locally (i.e., on the
token) with a C GenerateKey or

June 2004 Copyright © 2004 RSA Security Inc.



80 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attribute Data Type Meaning

C_GenerateKeyPair call

* created with a C_CopyObject
call as a copy of a key which had
its CKA_LOCAL attribute set to

CK_TRUE
CKA KEY GEN_ CK_MECHANISM | [dentifier of the mechanism used to
MECHANISM**° _TYPE generate the key material.

CKA_ALLOWED_MECHANISMS | CK_MECHANISM | A list of mechanisms allowed to be

—T,YtPEt—PTR’ used with this key. The number of
pointer to a . . .
CK_MECHANISM mechanisms in the array is the
_TYPE array ulValueLen component of the

attribute divided by the size
of CK_ MECHANISM TYPE.

“Refer to table Table 15 for footnotes

The CKA _ID field is intended to distinguish among multiple keys. In the case of public
and private keys, this field assists in handling multiple keys held by the same subject; the
key identifier for a public key and its corresponding private key should be the same. The
key identifier should also be the same as for the corresponding certificate, if one exists.
Cryptoki does not enforce these associations, however. (See Section 10.6 for further
commentary.)

In the case of secret keys, the meaning of the CKA _ID attribute is up to the application.

Note that the CKA_START DATE and CKA_END DATE attributes are for reference
only; Cryptoki does not attach any special meaning to them. In particular, it does not
restrict usage of a key according to the dates; doing this is up to the application.

The CKA_DERIVE attribute has the value CK TRUE if and only if it is possible to
derive other keys from the key.

The CKA_LOCAL attribute has the value CK_TRUE if and only if the value of the key
was originally generated on the token by a C_GenerateKey or C_GenerateKeyPair
call.

The CKA _KEY _GEN MECHANISM attribute identifies the key generation
mechanism used to generate the key material. It contains a valid value only if the
CKA_LOCAL attribute has the value CK TRUE. If CKA_LOCAL has the value
CK FALSE, the value of the attribute is CK_UNAVAILABLE INFORMATION.

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS 81

10.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. The following
table defines the attributes common to all public keys, in addition to the common
attributes defined for this object class:

Table 28, Common Public Key Attributes

Attribute Data type Meaning

CKA_ SUBJECT® Byte array DER-encoding of the key subject name
(default empty)

CKA_ENCRYPT® CK_BBOOL | CK_TRUE if key supports encryption’

CKA VERIFY® CK BBOOL | CK TRUE if key supports verification
where the signature is an appendix to
the data’

CKA_VERIFY RECOVER® | CK_ BBOOL | CK_TRUE if key supports verification
where the data is recovered from the

signature’
CKA WRAP® CK BBOOL | CK _TRUE if key supports wrapping
(i.e., can be used to wrap other keys)’
CKA_TRUSTED" CK BBOOL | The key can be trusted for the

application that it was created.

The wrapping key can be used to wrap
keys with

CKA_WRAP WITH_TRUSTED set to
CK_TRUE.

CKA WRAP TEMPLATE %{ATTRIBUTE— For wrapping keys. The attribute

template to match against any keys
wrapped using this wrapping key. Keys
that do not match cannot be wrapped.
The number of attributes in the array is
the ulValueLen component of the
attribute divided by the size of
CK_ATTRIBUTE.

“Refer to table Table 15 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier
for a public key will be the same as those for the corresponding certificate and private
key. However, Cryptoki does not enforce this, and it is not required that the certificate
and private key also be stored on the token.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

June 2004 Copyright © 2004 RSA Security Inc.



82 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 29, Mapping of X.509 key usage flags to cryptoki attributes for public keys

Key usage flags for public keys in X.509

Corresponding cryptoki attributes for

public key certificates public keys.
dataEncipherment CKA ENCRYPT
digitalSignature, keyCertSign, cRLSign CKA VERIFY
digitalSignature, keyCertSign, cRLSign CKA_ VERIFY RECOVER
keyAgreement CKA DERIVE
keyEncipherment CKA WRAP
nonRepudiation CKA VERIFY
nonRepudiation CKA VERIFY RECOVER

10.9 Private key objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. The
following table defines the attributes common to all private keys, in addition to the
common attributes defined for this object class:

Table 30, Common Private Key Attributes

Attribute Data type Meaning

CKA_SUBJECT® Byte array DER-encoding of certificate
subject name (default empty)

CKA_SENSITIVE®" CK_BBOOL | CK_TRUE if key is sensitive’

CKA DECRYPT® CK BBOOL | CK_TRUE if key supports
decryption’

CKA_SIGN® CK_BBOOL | CK_TRUE if key supports

signatures where the signature
is an appendix to the data’

CKA_SIGN RECOVER® CK BBOOL | CK TRUE if key supports

signatures where the data can
be recovered from the
signature’

CKA UNWRAP® CK BBOOL | CK_TRUE if key supports

unwrapping (i.e., can be used
to unwrap other keys)’

CKA EXTRACTABLE®*" CK_BBOOL | CK_TRUE ifkey is

extractable and can be
wrapped ’

CKA_ALWAYS SENSITIVE**° CK_BBOOL | CK_TRUE if key has always

had the CKA SENSITIVE
attribute set to CK_TRUE

CKA NEVER _EXTRACTABLE**® | CK BBOOL | CK TRUE if key has never

Copyright © 2004 RSA Security Inc.

June 2004



10. OBJECTS 83

Attribute Data type Meaning

had the
CKA _EXTRACTABLE
attribute set to CK_TRUE

CKA_WRAP_WITH TRUSTED" CK BBOOL | CK TRUE if the key can only
be wrapped with a wrapping
key that has CKA TRUSTED
set to CK_TRUE.

Default is CK_FALSE.

CKA UNWRAP TEMPLATE %EATTRJBUTE— For wrapping keys. The
attribute template to apply to
any keys unwrapped using this
wrapping key. Any user
supplied template is applied
after this template as if the
object has already been
created. The number of
attributes in the array is the
ulValueLen component of the
attribute divided by the size of
CK _ATTRIBUTE.
CKA_ALWAYS AUTHENTICATE | CK BBOOL | If CK_TRUE, the user has to
supply the PIN for each use

(sign or decrypt) with the key.
Default is CK_FALSE.

“Refer to table Table 15 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier
for a private key will be the same as those for the corresponding certificate and public
key. However, this is not enforced by Cryptoki, and it is not required that the certificate
and public key also be stored on the token.

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE
attribute is CK_FALSE, then certain attributes of the private key cannot be revealed in
plaintext outside the token. Which attributes these are is specified for each type of
private key in the attribute table in the section describing that type of key.

The CKA ALWAYS AUTHENTICATE attribute can be used to force re-
authentication (i.e. force the user to provide a PIN) for each use of a private key. “Use” in
this case means a cryptographic operation such as sign or decrypt. This attribute may
only be set to CK_TRUE when CKA_PRIVATE is also CK_TRUE.

Re-authentication  occurs by calling C_Login with wuserType set to

CKU_CONTEXT_SPECIFIC immediately after a cryptographic operation using the
key has been initiated (e.g. after C_Signlnit). In this call, the actual user type is

June 2004 Copyright © 2004 RSA Security Inc.



84 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

implicitly given by the usage requirements of the active key. If C_Login returns
CKR _OK the user was successfully authenticated and this sets the active key in an
authenticated state that lasts until the cryptographic operation has successfully or
unsuccessfully been completed (e.g. by C_Sign, C_SignFinal,..)). A return value
CKR _PIN INCORRECT from C_Login means that the user was denied permission to
use the key and continuing the cryptographic operation will result in a behavior as if
C _Login had not been called. In both of these cases the session state will remain the
same, however repeated failed re-authentication attempts may cause the PIN to be
locked. C_Login returns in this case CKR PIN LOCKED and this also logs the user out
from  the  token. Failing or  omitting to  re-authenticate = when
CKA ALWAYS AUTHENTICATE is set to CK TRUE will result in
CKR _USER NOT_LOGGED IN to be returned from calls using the key. C_Login will
return CKR_OPERATION NOT INITIALIZED, but the active cryptographic operation
will not be affected, if an attempt is made to re-authenticate when
CKA ALWAYS AUTHENTICATE is set to CK_FALSE.

10.10 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. The following
table defines the attributes common to all secret keys, in addition to the common
attributes defined for this object class:

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS

Table 31, Common Secret Key Attributes

85

Attribute

Data type

Meaning

CKA_SENSITIVE™"

CK_BBOOL

CK TRUE if object is sensitive
(default CK_FALSE)

CKA_ENCRYPT®

CK_BBOOL

CK TRUE if key supports
encryption’

CKA DECRYPT®

CK_BBOOL

CK TRUE if key supports
decryption’

CKA_SIGN®

CK_BBOOL

CK TRUE if key supports
signatures (i.e., authentication
codes) where the signature is an
appendix to the data’

CKA_VERIFY®

CK_BBOOL

CK_TRUE if key supports
verification (i.e., of authentication
codes) where the signature is an
appendix to the data’

CKA WRAP®

CK_BBOOL

CK TRUE if key supports
wrapping (i.e., can be used to
wrap other keys)’

CKA UNWRAP®

CK_BBOOL

CK TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)’

CKA_EXTRACTABLE™"

CK_BBOOL

CK_TRUE if key is extractable
and can be wrapped °

CKA_ALWAYS SENSITIVE**°

CK_BBOOL

CK _TRUE if key has always had
the CKA_SENSITIVE attribute
set to CK_TRUE

CKA NEVER EXTRACTABLE**
6

CK_BBOOL

CK TRUE if key has never had
the CKA EXTRACTABLE
attribute set to CK_TRUE

CKA CHECK VALUE

Byte array

Key checksum

CKA WRAP_WITH TRUSTED"

CK_BBOOL

CK TRUE if the key can only be
wrapped with a wrapping key that
has CKA TRUSTED set to
CK_TRUE.

Default is CK_FALSE.

CKA TRUSTED"

CK_BBOOL

The wrapping key can be used to
wrap keys with

CKA WRAP WITH TRUSTED
set to CK_TRUE.

CKA_ WRAP TEMPLATE

CK_ATTRIBUTE_
PTR

For wrapping keys. The attribute
template to match against any

June 2004

Copyright © 2004 RSA Security Inc.




86 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Attribute Data type Meaning

keys wrapped using this wrapping
key. Keys that do not match
cannot be wrapped. The number
of attributes in the array is the

ulValueLen component of the
attribute divided by the size of

CK _ATTRIBUTE

CKA UNWRAP TEMPLATE g;(ﬁATTRIBUTEf For wrapping keys. The attribute

template to apply to any keys
unwrapped using this wrapping
key. Any user supplied template
is applied after this template as if
the object has already been
created. The number of attributes
in the array is the u/ValueLen
component of the attribute
divided by the size of

CK_ATTRIBUTE.

“Refer to table Table 15 for footnotes

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE
attribute is CK_FALSE, then certain attributes of the secret key cannot be revealed in
plaintext outside the token. Which attributes these are is specified for each type of secret
key in the attribute table in the section describing that type of key.

The key check value (KCV) attribute for symmetric key objects to be called
CKA CHECK VALUE, of type byte array, length 3 bytes, operates like a fingerprint,
or checksum of the key. They are intended to be used to cross-check symmetric keys
against other systems where the same key is shared, and as a validity check after manual
key entry or restore from backup. Refer to object definitions of specific key types for
KCV algorithms.

Properties:

1. For two keys that are cryptographically identical the value of this attribute should
be identical.

2. CKA CHECK VALUE should not be usable to obtain any part of the key value.

3. Non-uniqueness. Two different keys can have the same CKA CHECK VALUE.
This is unlikely (the probability can easily be calculated) but possible.

The attribute is optional but if supported the value of the attribute is always supplied by
the library regardless of how the key object is created or derived. It shall be supplied

Copyright © 2004 RSA Security Inc. June 2004



10. OBJECTS 87

even if the encryption operation for the key is forbidden (i.e. when CKA ENCRYPT is
set to CK_FALSE).

If a value is supplied in the application template (allowed but never necessary) then, if
supported, it must match what the library calculates it to be or the library returns a
CKR ATTRIBUTE VALUE INVALID. If the library does not support the attribute
then it should ignore it. Allowing the attribute in the template this way does no harm and
allows the attribute to be treated like any other attribute for the purposes of key wrap and
unwrap where the attributes are preserved also.

The generation of the KCV may be prevented by the application supplying the attribute
in the template as a no-value (0 length) entry. The application can query the value at any
time like any other attribute using C_GetAttributeValue. C_SetAttributeValue may be
used to destroy the attribute, by supplying no-value.

Unless otherwise specified for the object definition, the value of this attribute is derived
from the key object by taking the first three bytes of an encryption of a single block of
null (0x00) bytes, using the default cipher and mode (e.g. ECB) associated with the key
type of the secret key object.

10.11 Domain parameter objects

10.11.1 Definitions

This section defines the object class CKO DOMAIN PARAMETERS for type
CK _OBJECT_CLASS as used in the CKA CLASS attribute of objects.

10.11.2 Overview

This object class was created to support the storage of certain algorithm's extended
parameters. DSA and DH both use domain parameters in the key-pair generation step. In
particular, some libraries support the generation of domain parameters (originally out of
scope for PKCS11) so the object class was added.

To use a domain parameter object you must extract the attributes into a template and
supply them (still in the template) to the corresponding key-pair generation function.

Domain parameter objects (object class CKO_DOMAIN_PARAMETERS) hold public
domain parameters.

The following table defines the attributes common to domain parameter objects in
addition to the common attributes defined for this object class:

June 2004 Copyright © 2004 RSA Security Inc.



88 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 32, Common Domain Parameter Attributes

Attribute Data Type Meaning

CKA KEY TYPE' CK KEY TYPE | Type of key the domain parameters can
be used to generate.

CKA_ LOCAL** CK _BBOOL CK _TRUE only if domain parameters

were either

» generated locally (i.e., on the token)
with a C_GenerateKey

» created with a C_CopyObject call
as a copy of domain parameters
which had its CKA_LOCAL
attribute set to CK_TRUE

“Refer to table Table 15 for footnotes

The CKA_LOCAL attribute has the value CK_TRUE if and only if the value of the
domain parameters were originally generated on the token by a C_GenerateKey call.

10.12 Mechanism objects

10.12.1 Definitions

This section defines the object class CKO MECHANISM for type
CK _OBJECT_CLASS as used in the CKA CLASS attribute of objects.

10.12.2 Overview

Mechanism objects provide information about mechanisms supported by a device beyond
that given by the CK_MECHANISM_INFO structure.

When searching for objects using C_FindObjectsInit and C_FindObjects, mechanism
objects are not returned unless the CKA_CLASS attribute in the template has the value
CKO_MECHANISM. This protects applications written to previous versions of
cryptoki from finding objects that they do not understand.

Table 33, Common Mechanism Attributes

Attribute Data Type Meaning
CKA MECHANISM TYPE | CK MECHANISM TYPE | The type of mechanism
object

The CKA_MECHANISM_TYPE attribute may not be set.

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 89

11  Functions

Cryptoki's functions are organized into the following categories:

» general-purpose functions (4 functions)

* slot and token management functions (9 functions)

* session management functions (8 functions)

* object management functions (9 functions)

* encryption functions (4 functions)

* decryption functions (4 functions)

* message digesting functions (5 functions)

* signing and MACing functions (6 functions)

» functions for verifying signatures and MACs (6 functions)

* dual-purpose cryptographic functions (4 functions)

* key management functions (5 functions)

* random number generation functions (2 functions)

» parallel function management functions (2 functions)

In addition to these functions, Cryptoki can use application-supplied callback functions to
notify an application of certain events, and can also use application-supplied functions to
handle mutex objects for safe multi-threaded library access.

Execution of a Cryptoki function call is in general an all-or-nothing affair, i.e., a function
call accomplishes either its entire goal, or nothing at all.

* [fa Cryptoki function executes successfully, it returns the value CKR OK.

* Ifa Cryptoki function does not execute successfully, it returns some value other than
CKR_OK, and the token is in the same state as it was in prior to the function call. If
the function call was supposed to modify the contents of certain memory addresses on
the host computer, these memory addresses may have been modified, despite the
failure of the function.

June 2004 Copyright © 2004 RSA Security Inc.



90 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* In unusual (and extremely unpleasant!) circumstances, a function can fail with the
return value CKR_GENERAL ERROR. When this happens, the token and/or host
computer may be in an inconsistent state, and the goals of the function may have been
partially achieved.

There are a small number of Cryptoki functions whose return values do not behave
precisely as described above; these exceptions are documented individually with the
description of the functions themselves.

A Cryptoki library need not support every function in the Cryptoki API. However, even
an unsupported function must have a “stub” in the library which simply returns the value
CKR _FUNCTION NOT SUPPORTED. The function’s entry in the library’s
CK _FUNCTION_LIST structure (as obtained by C_GetFunctionList) should point to
this stub function (see Section 9.6).

11.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In
Section 11.1, we enumerate the various possible return values for Cryptoki functions;
most of the remainder of Section 10.12 details the behavior of Cryptoki functions,
including what values each of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki
applications attempt to give some leeway when interpreting Cryptoki functions’ return
values. We have attempted to specify the behavior of Cryptoki functions as completely
as was feasible; nevertheless, there are presumably some gaps. For example, it is
possible that a particular error code which might apply to a particular Cryptoki function
is unfortunately not actually listed in the description of that function as a possible error
code. It is conceivable that the developer of a Cryptoki library might nevertheless permit
his/her implementation of that function to return that error code. It would clearly be
somewhat ungraceful if a Cryptoki application using that library were to terminate by
abruptly dumping core upon receiving that error code for that function. It would be far
preferable for the application to examine the function’s return value, see that it indicates
some sort of error (even if the application doesn’t know precisely what kind of error), and
behave accordingly.

See Section 11.1.8 for some specific details on how a developer might attempt to make
an application that accommodates a range of behaviors from Cryptoki libraries.

11.1.1 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 91

* CKR_GENERAL ERROR: Some horrible, unrecoverable error has occurred. In the
worst case, it is possible that the function only partially succeeded, and that the
computer and/or token is in an inconsistent state.

e CKR _HOST MEMORY: The computer that the Cryptoki library is running on has
insufficient memory to perform the requested function.

* CKR _FUNCTION FAILED: The requested function could not be performed, but
detailed information about why not is not available in this error return. If the failed
function uses a session, it is possible that the CK_SESSION_INFO structure that
can be obtained by calling C_GetSessionInfo will hold useful information about
what happened in its u/DeviceError field. In any event, although the function call
failed, the situation is not necessarily totally hopeless, as it is likely to be when
CKR GENERAL ERROR is returned. Depending on what the root cause of the
error actually was, it is possible that an attempt to make the exact same function call
again would succeed.

* CKR_OK: The function executed successfully. Technically, CKR OK is not quite a
“universal” return value; in particular, the legacy functions C_GetFunctionStatus
and C_CancelFunction (see Section 11.16) cannot return CKR _OK.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR GENERAL ERROR or CKR HOST MEMORY would be an appropriate error
return, then CKR_GENERAL ERROR should be returned.

11.1.2 Cryptoki function return values for functions that use a session
handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any
Cryptoki function except for C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList,
C_GetSlotList, C_GetSlotInfo, C_GetTokenlInfo, C_WaitForSlotEvent,
C_GetMechanismList, C_GetMechanismInfo, C_InitToken, C_OpenSession, and
C_CloseAllSessions) can return the following values:

e CKR SESSION HANDLE INVALID: The specified session handle was invalid at
the time that the function was invoked. Note that this can happen if the session’s
token is removed before the function invocation, since removing a token closes all
sessions with it.

* CKR DEVICE REMOVED: The token was removed from its slot during the
execution of the function.

e CKR SESSION CLOSED: The session was closed during the execution of the
function. Note that, as stated in Section 6.7.6, the behavior of Cryptoki is undefined
if multiple threads of an application attempt to access a common Cryptoki session
simultaneously. Therefore, there is actually no guarantee that a function invocation

June 2004 Copyright © 2004 RSA Security Inc.



92 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

could ever return the value CKR SESSION CLOSED—if one thread is using a
session when another thread closes that session, that is an instance of multiple threads
accessing a common session simultaneously.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR _SESSION HANDLE INVALID or CKR DEVICE REMOVED would be an
appropriate error return, then CKR_SESSION HANDLE INVALID should be returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token
being removed during a function execution.

11.1.3 Cryptoki function return values for functions that use a token

Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for
C_Initialize, C_Finalize, C_GetIlnfo, C_GetFunctionList, C_GetSlotList,
C_GetSlotInfo, or C_WaitForSlotEvent) can return any of the following values:

* CKR_DEVICE MEMORY: The token does not have sufficient memory to perform
the requested function.

* CKR DEVICE ERROR: Some problem has occurred with the token and/or slot.
This error code can be returned by more than just the functions mentioned above; in
particular, it is possible for C_GetSlotInfo to return CKR_DEVICE ERROR.

* CKR TOKEN NOT PRESENT: The token was not present in its slot at the time
that the function was invoked.

e CKR DEVICE REMOVED: The token was removed from its slot during the
execution of the function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR _DEVICE MEMORY or CKR DEVICE ERROR would be an appropriate error
return, then CKR_DEVICE MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token
being removed during a function execution.

11.14 Special return value for application-supplied callbacks

There is a special-purpose return value which is not returned by any function in the actual
Cryptoki API, but which may be returned by an application-supplied callback function.
Itis:

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 93

* CKR_CANCEL: When a function executing in serial with an application decides to
give the application a chance to do some work, it calls an application-supplied
function with a CKN_SURRENDER callback (see Section 11.17). If the callback
returns the value CKR CANCEL, then the function aborts and returns
CKR_FUNCTION CANCELED.

11.1.5 Special return values for mutex-handling functions

There are two other special-purpose return values which are not returned by any actual
Cryptoki functions. These values may be returned by application-supplied mutex-
handling functions, and they may safely be ignored by application developers who are
not using their own threading model. They are:

* CKR _MUTEX BAD: This error code can be returned by mutex-handling functions
who are passed a bad mutex object as an argument. Unfortunately, it is possible for
such a function not to recognize a bad mutex object. There is therefore no guarantee
that such a function will successfully detect bad mutex objects and return this value.

e CKR MUTEX NOT LOCKED: This error code can be returned by mutex-
unlocking functions. It indicates that the mutex supplied to the mutex-unlocking
function was not locked.

11.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in
the descriptions of particular error codes, there are in general no particular priorities
among the errors listed below, i.e., if more than one error code might apply to an
execution of a function, then the function may return any applicable error code.

* CKR_ARGUMENTS BAD: This is a rather generic error code which indicates that
the arguments supplied to the Cryptoki function were in some way not appropriate.

* CKR_ATTRIBUTE READ ONLY: An attempt was made to set a value for an
attribute which may not be set by the application, or which may not be modified by
the application. See Section 10.1 for more information.

* CKR_ATTRIBUTE SENSITIVE: An attempt was made to obtain the value of an
attribute of an object which cannot be satisfied because the object is either sensitive
or unextractable.

* CKR_ATTRIBUTE TYPE INVALID: An invalid attribute type was specified in a
template. See Section 10.1 for more information.

e CKR ATTRIBUTE VALUE INVALID: An invalid value was specified for a
particular attribute in a template. See Section 10.1 for more information.

June 2004 Copyright © 2004 RSA Security Inc.



94

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR BUFFER TOO SMALL: The output of the function is too large to fit in the
supplied buffer.

CKR CANT _LOCK: This value can only be returned by C_Initialize. It means that
the type of locking requested by the application for thread-safety is not available in
this library, and so the application cannot make use of this library in the specified
fashion.

CKR _CRYPTOKI ALREADY INITIALIZED: This value can only be returned by
C_Initialize. It means that the Cryptoki library has already been initialized (by a
previous call to C_Initialize which did not have a matching C_Finalize call).

CKR CRYPTOKI NOT INITIALIZED: This value can be returned by any function
other than C_Initialize and C_GetFunctionList. It indicates that the function cannot
be executed because the Cryptoki library has not yet been initialized by a call to
C_Initialize.

CKR DATA INVALID: The plaintext input data to a cryptographic operation is
invalid. This return value has lower priority than CKR DATA LEN RANGE.

CKR _DATA LEN RANGE: The plaintext input data to a cryptographic operation
has a bad length. Depending on the operation’s mechanism, this could mean that the

plaintext data is too short, too long, or is not a multiple of some particular blocksize.
This return value has higher priority than CKR_DATA INVALID.

CKR DOMAIN PARAMS INVALID: Invalid or unsupported domain parameters
were supplied to the function. Which representation methods of domain parameters
are supported by a given mechanism can vary from token to token.

CKR _ENCRYPTED DATA INVALID: The encrypted input to a decryption
operation has been determined to be invalid ciphertext. This return value has lower
priority than CKR_ENCRYPTED DATA LEN RANGE.

CKR _ENCRYPTED DATA LEN RANGE: The ciphertext input to a decryption
operation has been determined to be invalid ciphertext solely on the basis of its
length. Depending on the operation’s mechanism, this could mean that the ciphertext
is too short, too long, or is not a multiple of some particular blocksize. This return
value has higher priority than CKR_ENCRYPTED DATA INVALID.

CKR _FUNCTION CANCELED: The function was canceled in mid-execution. This
happens to a cryptographic function if the function makes a CKN_SURRENDER
application callback which returns CKR CANCEL (see CKR CANCEL). It also
happens to a function that performs PIN entry through a protected path. The method
used to cancel a protected path PIN entry operation is device dependent.

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 95

e CKR _FUNCTION NOT PARALLEL: There is currently no function executing in
parallel in the specified session. This is a legacy error code which is only returned by
the legacy functions C_GetFunctionStatus and C_CancelFunction.

e CKR _FUNCTION NOT _SUPPORTED: The requested function is not supported by
this Cryptoki library. Even unsupported functions in the Cryptoki API should have a
“stub” in the library; this stub should simply return the value
CKR_FUNCTION _NOT SUPPORTED.

* CKR_FUNCTION REJECTED: The signature request is rejected by the user.

* CKR_INFORMATION SENSITIVE: The information requested could not be
obtained because the token considers it sensitive, and is not able or willing to reveal
it.

* CKR _KEY CHANGED: This value is only returned by C_SetOperationState. It
indicates that one of the keys specified is not the same key that was being used in the
original saved session.

* CKR _KEY FUNCTION NOT PERMITTED: An attempt has been made to use a
key for a cryptographic purpose that the key’s attributes are not set to allow it to do.
For example, to use a key for performing encryption, that key must have its
CKA_ENCRYPT attribute set to CK_TRUE (the fact that the key must have a
CKA_ENCRYPT attribute implies that the key cannot be a private key). This return
value has lower priority than CKR_KEY TYPE INCONSISTENT.

* CKR KEY HANDLE INVALID: The specified key handle is not valid. It may be
the case that the specified handle is a valid handle for an object which is not a key.
We reiterate here that 0 is never a valid key handle.

* CKR _KEY INDIGESTIBLE: This error code can only be returned by C_DigestKey.
It indicates that the value of the specified key cannot be digested for some reason

(perhaps the key isn’t a secret key, or perhaps the token simply can’t digest this kind
of key).

e CKR _KEY NEEDED: This value is only returned by C_SetOperationState. It
indicates that the session state cannot be restored because C_SetOperationState
needs to be supplied with one or more keys that were being used in the original saved
session.

* CKR KEY NOT NEEDED: An extranecous key was  supplied to
C_SetOperationState. For example, an attempt was made to restore a session that
had been performing a message digesting operation, and an encryption key was
supplied.

« CKR KEY NOT WRAPPABLE: Although the specified private or secret key does
not have its CKA UNEXTRACTABLE attribute set to CK_TRUE, Cryptoki (or the

June 2004 Copyright © 2004 RSA Security Inc.



96

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

token) is unable to wrap the key as requested (possibly the token can only wrap a
given key with certain types of keys, and the wrapping key specified is not one of
these types). Compare with CKR_ KEY UNEXTRACTABLE.

CKR KEY SIZE RANGE: Although the requested keyed cryptographic operation
could in principle be carried out, this Cryptoki library (or the token) is unable to
actually do it because the supplied key‘s size is outside the range of key sizes that it
can handle.

CKR_KEY TYPE INCONSISTENT: The specified key is not the correct type of
key to use with the specified mechanism. This return value has a higher priority than
CKR _KEY FUNCTION NOT_PERMITTED.

CKR KEY UNEXTRACTABLE: The specified private or secret key can’t be
wrapped because its CKA UNEXTRACTABLE attribute is set to CK TRUE.
Compare with CKR_ KEY NOT WRAPPABLE.

CKR_MECHANISM INVALID: An invalid mechanism was specified to the
cryptographic operation. This error code is an appropriate return value if an unknown
mechanism was specified or if the mechanism specified cannot be used in the selected
token with the selected function.

CKR _MECHANISM PARAM INVALID: Invalid parameters were supplied to the
mechanism specified to the cryptographic operation. Which parameter values are
supported by a given mechanism can vary from token to token.

CKR NEED TO CREATE THREADS: This value can only be returned by
C Initialize. It is returned when two conditions hold:

1. The application called C_Initialize in a way which tells the Cryptoki library
that application threads executing calls to the library cannot use native
operating system methods to spawn new threads.

2. The library cannot function properly without being able to spawn new threads
in the above fashion.

CKR_NO_EVENT: This value can only be returned by C_GetSlotEvent. It is
returned when C_GetSlotEvent is called in non-blocking mode and there are no new
slot events to return.

CKR OBJECT HANDLE INVALID: The specified object handle is not valid. We
reiterate here that 0 is never a valid object handle.

CKR OPERATION ACTIVE: There is already an active operation (or combination
of active operations) which prevents Cryptoki from activating the specified operation.
For example, an active object-searching operation would prevent Cryptoki from
activating an encryption operation with C_Encryptlnit. Or, an active digesting

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 97

operation and an active encryption operation would prevent Cryptoki from activating
a signature operation. Or, on a token which doesn’t support simultaneous dual
cryptographic  operations in a session (see the description of the
CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO
structure), an active signature operation would prevent Cryptoki from activating an
encryption operation.

e CKR OPERATION NOT INITIALIZED: There is no active operation of an
appropriate type in the specified session. For example, an application cannot call
C_Encrypt in a session without having called C_Encryptlnit first to activate an
encryption operation.

e CKR PIN EXPIRED: The specified PIN has expired, and the requested operation
cannot be carried out unless C_SetPIN is called to change the PIN value. Whether or
not the normal user’s PIN on a token ever expires varies from token to token.

e CKR PIN INCORRECT: The specified PIN is incorrect, i.e., does not match the PIN
stored on the token. More generally-- when authentication to the token involves
something other than a PIN-- the attempt to authenticate the user has failed.

e CKR PIN INVALID: The specified PIN has invalid characters in it. This return
code only applies to functions which attempt to set a PIN.

* CKR PIN LEN RANGE: The specified PIN is too long or too short. This return
code only applies to functions which attempt to set a PIN.

* CKR _PIN LOCKED: The specified PIN is “locked”, and cannot be used. That is,
because some particular number of failed authentication attempts has been reached,
the token is unwilling to permit further attempts at authentication. Depending on the
token, the specified PIN may or may not remain locked indefinitely.

* CKR_RANDOM NO RNG: This value can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random

number  generator. This return value has higher priority than
CKR_RANDOM_SEED NOT SUPPORTED.

* CKR _RANDOM SEED NOT SUPPORTED: This value can only be returned by
C_SeedRandom. It indicates that the token’s random number generator does not

accept seeding from an application. This return value has lower priority than
CKR_RANDOM NO RNG.

* CKR _SAVED STATE INVALID: This value can only be returned by
C_SetOperationState. It indicates that the supplied saved cryptographic operations
state is invalid, and so it cannot be restored to the specified session.

* CKR_SESSION COUNT: This value can only be returned by C_OpenSession. It
indicates that the attempt to open a session failed, either because the token has too

June 2004 Copyright © 2004 RSA Security Inc.



98

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

many sessions already open, or because the token has too many read/write sessions
already open.

CKR _SESSION EXISTS: This value can only be returned by C_InitToken. It
indicates that a session with the token is already open, and so the token cannot be
initialized.

CKR SESSION PARALLEL NOT SUPPORTED: The specified token does not
support parallel sessions. This is a legacy error code—in Cryptoki Version 2.01 and
up, no token supports parallel sessions.
CKR_SESSION PARALLEL NOT SUPPORTED can only be returned by
C _OpenSession, and it is only returned when C_OpenSession is called in a
particular [deprecated] way.

CKR_SESSION READ ONLY: The specified session was unable to accomplish the
desired action because it is a read-only session. This return value has lower priority
than CKR_ TOKEN WRITE PROTECTED.

CKR _SESSION READ ONLY_ EXISTS: A read-only session already exists, and so
the SO cannot be logged in.

CKR_SESSION READ WRITE SO EXISTS: A read/write SO session already
exists, and so a read-only session cannot be opened.

CKR SIGNATURE LEN RANGE: The provided signature/MAC can be seen to be
invalid solely on the basis of its length. This return value has higher priority than
CKR _SIGNATURE_INVALID.

CKR SIGNATURE INVALID: The provided signature/MAC is invalid. This return
value has lower priority than CKR_SIGNATURE LEN RANGE.

CKR SLOT ID INVALID: The specified slot ID is not valid.

CKR STATE UNSAVEABLE: The cryptographic operations state of the specified
session cannot be saved for some reason (possibly the token is simply unable to save

the current state). This return value has lower priority than
CKR_OPERATION NOT INITIALIZED.

CKR_TEMPLATE INCOMPLETE: The template specified for creating an object is
incomplete, and lacks some necessary attributes. See Section 10.1 for more
information.

CKR_TEMPLATE INCONSISTENT: The template specified for creating an object
has conflicting attributes. See Section 10.1 for more information.

CKR TOKEN NOT RECOGNIZED: The Cryptoki library and/or slot does not
recognize the token in the slot.

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 99

* CKR_TOKEN WRITE PROTECTED: The requested action could not be performed
because the token is write-protected. This return value has higher priority than
CKR SESSION READ ONLY.

* CKR _UNWRAPPING KEY HANDLE INVALID: This value can only be returned
by C_UnwrapKey. It indicates that the key handle specified to be used to unwrap
another key is not valid.

* CKR _UNWRAPPING KEY SIZE RANGE: This value can only be returned by
C_UnwrapKey. It indicates that although the requested unwrapping operation could
in principle be carried out, this Cryptoki library (or the token) is unable to actually do
it because the supplied key’s size is outside the range of key sizes that it can handle.

* CKR UNWRAPPING KEY TYPE INCONSISTENT: This value can only be
returned by C_UnwrapKey. It indicates that the type of the key specified to unwrap
another key is not consistent with the mechanism specified for unwrapping.

» CKR USER ALREADY LOGGED IN: This value can only be returned by
C_Login. It indicates that the specified user cannot be logged into the session,
because it is already logged into the session. For example, if an application has an
open SO session, and it attempts to log the SO into it, it will receive this error code.

* CKR USER ANOTHER ALREADY LOGGED IN: This value can only be
returned by C_Login. It indicates that the specified user cannot be logged into the
session, because another user is already logged into the session. For example, if an
application has an open SO session, and it attempts to log the normal user into it, it
will receive this error code.

* CKR _USER NOT LOGGED IN: The desired action cannot be performed because
the appropriate user (or an appropriate user) is not logged in. One example is that a
session cannot be logged out unless it is logged in. Another example is that a private
object cannot be created on a token unless the session attempting to create it is logged
in as the normal user. A final example is that cryptographic operations on certain
tokens cannot be performed unless the normal user is logged in.

* CKR _USER PIN NOT INITIALIZED: This value can only be returned by
C_Login. It indicates that the normal user’s PIN has not yet been initialized with
C_InitPIN.

e CKR _USER TOO MANY TYPES: An attempt was made to have more distinct
users simultaneously logged into the token than the token and/or library permits. For
example, if some application has an open SO session, and another application
attempts to log the normal user into a session, the attempt may return this error. It is
not required to, however. Only if the simultaneous distinct users cannot be supported
does C_Login have to return this value. Note that this error code generalizes to true
multi-user tokens.

June 2004 Copyright © 2004 RSA Security Inc.



100 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

e CKR _USER TYPE INVALID: An invalid value was specified as a
CK USER TYPE. Valid types are CKU SO, CKU _USER, and
CKU_CONTEXT _SPECIFIC.

* CKR _WRAPPED KEY INVALID: This value can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key is not valid. If a call is
made to C_UnwrapKey to unwrap a particular type of key (i.e., some particular key
type is specified in the template provided to C_UnwrapKey), and the wrapped key
provided to C_UnwrapKey is recognizably not a wrapped key of the proper type,
then C_UnwrapKey should return CKR. WRAPPED KEY INVALID. This return
value has lower priority than CKR. WRAPPED KEY LEN RANGE.

e CKR WRAPPED KEY LEN RANGE: This value can only be returned by
C _UnwrapKey. It indicates that the provided wrapped key can be seen to be invalid

solely on the basis of its length. This return value has higher priority than
CKR _WRAPPED KEY INVALID.

e CKR WRAPPING KEY HANDLE INVALID: This value can only be returned by
C _WrapKey. It indicates that the key handle specified to be used to wrap another
key is not valid.

* CKR_WRAPPING KEY SIZE RANGE: This value can only be returned by
C_WrapKey. It indicates that although the requested wrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actually do it
because the supplied wrapping key’s size is outside the range of key sizes that it can

handle.

e CKR WRAPPING KEY TYPE INCONSISTENT: This value can only be returned
by C_WrapKey. It indicates that the type of the key specified to wrap another key is
not consistent with the mechanism specified for wrapping.

11.1.7 More on relative priorities of Cryptoki errors

In general, when a Cryptoki call is made, error codes from Section 11.1.1 (other than
CKR_OK) take precedence over error codes from Section 11.1.2, which take precedence
over error codes from Section 11.1.3, which take precedence over error codes from
Section 11.1.6. One minor implication of this is that functions that use a session handle
(i.e., most functions!) never return the error code CKR_ TOKEN NOT PRESENT (they
return CKR_SESSION HANDLE INVALID instead). Other than these precedences, if
more than one error code applies to the result of a Cryptoki call, any of the applicable
error codes may be returned. Exceptions to this rule will be explicitly mentioned in the
descriptions of functions.

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 101

11.1.8 Error code “gotchas”

Here is a short list of a few particular things about return values that Cryptoki developers
might want to be aware of:

1. As mentioned in Sections 11.1.2 and 11.1.3, a Cryptoki library may not be able to
make a distinction between a token being removed before a function invocation and a
token being removed during a function invocation.

2. As mentioned in Section 11.1.2, an application should never count on getting a
CKR_SESSION CLOSED error.

3. The difference between CKR DATA INVALID and CKR DATA LEN RANGE
can be somewhat subtle. Unless an application needs to be able to distinguish
between these return values, it is best to always treat them equivalently.

4. Similarly, the difference between CKR ENCRYPTED DATA INVALID and
CKR_ENCRYPTED DATA LEN RANGE, and between
CKR WRAPPED KEY INVALID and CKR WRAPPED KEY LEN RANGE,
can be subtle, and it may be best to treat these return values equivalently.

5. Even with the guidance of Section 10.1, it can be difficult for a Cryptoki library
developer to know which of CKR ATTRIBUTE VALUE INVALID,
CKR TEMPLATE INCOMPLETE, or CKR TEMPLATE INCONSISTENT to
return. When possible, it is recommended that application developers be generous in
their interpretations of these error codes.

11.2  Conventions for functions returning output in a variable-length buffer

A number of the functions defined in Cryptoki return output produced by some
cryptographic mechanism. The amount of output returned by these functions is returned
in a variable-length application-supplied buffer. An example of a function of this sort is
C_Encrypt, which takes some plaintext as an argument, and outputs a buffer full of
ciphertext.

These functions have some common calling conventions, which we describe here. Two
of the arguments to the function are a pointer to the output buffer (say pBuf) and a pointer
to a location which will hold the length of the output produced (say pul/BufLen). There
are two ways for an application to call such a function:

1. If pBuf is NULL PTR, then all that the function does is return (in *pu/BufLen) a
number of bytes which would suffice to hold the cryptographic output produced from
the input to the function. This number may somewhat exceed the precise number of
bytes needed, but should not exceed it by a large amount. CKR OK is returned by
the function.

June 2004 Copyright © 2004 RSA Security Inc.



102 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

2. If pBuf is not NULL PTR, then *pu/BufLen must contain the size in bytes of the
buffer pointed to by pBuf. If that buffer is large enough to hold the cryptographic
output produced from the input to the function, then that cryptographic output is
placed there, and CKR OK is returned by the function. If the buffer is not large
enough, then CKR_BUFFER _TOO SMALL is returned. In either case, *pulBufLen
is set to hold the exact number of bytes needed to hold the cryptographic output
produced from the input to the function.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should always
return as much output as can be computed from what has been passed in to them thus far.
As an example, consider a session which is performing a multiple-part decryption
operation with DES in cipher-block chaining mode with PKCS padding. Suppose that,
initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate function. The
blocksize of DES is 8 bytes, but the PKCS padding makes it unclear at this stage whether
the ciphertext was produced from encrypting a 0-byte string, or from encrypting some
string of length at least 8 bytes. Hence the call to C_DecryptUpdate should return 0
bytes of plaintext. If a single additional byte of ciphertext is supplied by a subsequent
call to C_DecryptUpdate, then that call should return 8 bytes of plaintext (one full DES
block).

11.3 Disclaimer concerning sample code

For the remainder of this section, we enumerate the various functions defined in
Cryptoki. Most functions will be shown in use in at least one sample code snippet. For
the sake of brevity, sample code will frequently be somewhat incomplete. In particular,
sample code will generally ignore possible error returns from C library functions, and
also will not deal with Cryptoki error returns in a realistic fashion.

11.4 General-purpose functions

Cryptoki provides the following general-purpose functions:

¢ C_Initialize

CK_DEFI NE_FUNCTI ON(CK_RV, C_Initialize)(
CK_VAO D _PTR plnitArgs
);

C_Initialize initializes the Cryptoki library. plnitArgs either has the value NULL PTR
or points to a CK_C _INITIALIZE ARGS structure containing information on how the
library should deal with multi-threaded access. If an application will not be accessing
Cryptoki through multiple threads simultaneously, it can generally supply the value

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 103

NULL PTR to C_Initialize (the consequences of supplying this value will be explained
below).

If plnitArgs is non-NULL PTR, C_Initialize should cast it to a
CK_C_INITIALIZE _ARGS PTR and then dereference the resulting pointer to obtain
the CK_C_INITIALIZE_ARGS fields CreateMutex, DestroyMutex, LockMutex,
UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of pReserved
thereby obtained must be NULL PTR; if it’s not, then C_Initialize should return with
the value CKR_ ARGUMENTS BAD.

If the CKF_LIBRARY_CANT_CREATE_OS_THREADS flag in the flags field is set,
that indicates that application threads which are executing calls to the Cryptoki library
are not permitted to use the native operation system calls to spawn off new threads. In
other words, the library’s code may not create its own threads. If the library is unable to
function properly under this restriction, C_Initialize should return with the value
CKR NEED TO CREATE THREADS.

A call to C _Initialize specifies one of four different ways to support multi-threaded
access via the value of the CKF_OS_LOCKING OK flag in the flags field and the
values of the CreateMutex, DestroyMutex, LockMutex, and UnlockMutex function pointer
fields:

1. If the flag isn’t set, and the function pointer fields aren’t supplied (i.e., they all have
the value NULL PTR), that means that the application won’t be accessing the
Cryptoki library from multiple threads simultaneously.

2. If the flag is set, and the function pointer fields aren’t supplied (i.e., they all have the
value NULL PTR), that means that the application will be performing multi-threaded
Cryptoki access, and the library needs to use the native operating system primitives to
ensure safe multi-threaded access. If the library is unable to do this, C_Initialize
should return with the value CKR_CANT LOCK.

3. If the flag isn’t set, and the function pointer fields are supplied (i.e., they all have
non-NULL PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use the supplied function pointers
for mutex-handling to ensure safe multi-threaded access. If the library is unable to do
this, C_Initialize should return with the value CKR CANT LOCK.

4. If the flag is set, and the function pointer fields are supplied (i.e., they all have non-
NULL PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use either the native operating
system primitives or the supplied function pointers for mutex-handling to ensure safe
multi-threaded access. If the library is unable to do this, C_Initialize should return
with the value CKR_CANT_ LOCK.

If some, but not all, of the supplied function pointers to C_Initialize are non-
NULL_PTR, then C_Initialize should return with the value CKR_ ARGUMENTS BAD.

June 2004 Copyright © 2004 RSA Security Inc.



104 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

A call to C_Initialize with plnitArgs set to NULL PTR is treated like a call to
C_Initialize with plnitArgs pointing to a CK_C_INITIALIZE_ARGS which has the
CreateMutex, DestroyMutex, LockMutex, UnlockMutex, and pReserved fields set to
NULL PTR, and has the flags field set to 0.

C _Initialize should be the first Cryptoki call made by an application, except for calls to
C_GetFunctionList. What this function actually does is implementation-dependent;
typically, it might cause Cryptoki to initialize its internal memory buffers, or any other
resources it requires.

If several applications are using Cryptoki, each one should call C_Initialize. Every call
to C_Initialize should (eventually) be succeeded by a single call to C_Finalize. See
Section 6.6 for more details.

Return values: CKR_ ARGUMENTS BAD, CKR CANT LOCK,

CKR CRYPTOKI ALREADY INITIALIZED, CKR FUNCTION FAILED,
CKR GENERAL ERROR, CKR HOST MEMORY,

CKR NEED TO CREATE THREADS, CKR OK.

Example: see C_Getlnfo.

¢ C Finalize

CK_DEFI NE_FUNCTI ON(CK_RV, C _Finali ze)(
CK_ VO D _PTR pReserved
)

C_Finalize is called to indicate that an application is finished with the Cryptoki library.
It should be the last Cryptoki call made by an application. The pReserved parameter is
reserved for future versions; for this version, it should be set to NULL PTR (if
C_Finalize is called with a non-NULL PTR value for pReserved, it should return the
value CKR. ARGUMENTS BAD.

If several applications are using Cryptoki, each one should call C_Finalize. Each
application’s call to C_Finalize should be preceded by a single call to C_Initialize; in
between the two calls, an application can make calls to other Cryptoki functions. See
Section 6.6 for more details.

Despite the fact that the parameters supplied to C_Initialize can in general allow for safe
multi-threaded access to a Cryptoki library, the behavior of C_Finalize is nevertheless
undefined if it is called by an application while other threads of the application are
making Cryptoki calls. The exception to this exceptional behavior of C_Finalize occurs
when a thread calls C_Finalize while another of the application’s threads is blocking on
Cryptoki’s C_WaitForSlotEvent function. When this happens, the blocked thread
becomes unblocked and returns the value CKR _CRYPTOKI NOT INITIALIZED. See
C_WaitForSlotEvent for more information.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 105

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OK.

Example: see C_GetInfo.

¢ C_Getlnfo

CK_DEFI NE_FUNCTI ON(CK_RV, C Getlnfo)(
CK_I NFO_PTR pl nfo

) |

C_GetlInfo returns general information about Cryptoki. plnfo points to the location that
receives the information.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK.

Example:

CK_ I NFO i nfo;
CK_RV rv;
CK_ C INTIALI ZE ARGS I nitArgs;

I nitArgs. CreateMitex = &WCreat eMut ex;

I ni t Args. DestroyMiutex = &WDestroyMit ex;
I nit Args. LockMut ex = &WLockMut ex;

I ni t Args. Unl ockMut ex = &WUnl ockMut ex;
InitArgs.flags = CKF_OS_LOCKI NG OXK;

I nit Args. pReserved = NULL_PTR

rv = Clnitialize((CK VO D PTR) & nitArgs);
assert(rv == CKR_XK);

rv = C Getlnfo(& nfo);
assert(rv == CKR_XK);

if(info.version.mjor == 2) {
/* Do lots of interesting cryptographic things with the
t oken */
}

rv = C Finalize(NULL_PTR);
assert(rv == CKR_X);

June 2004 Copyright © 2004 RSA Security Inc.




106 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_GetFunctionList

CK_DEFI NE_FUNCTI ON( CK_RV, C_Cet Functi onLi st) (
CK_FUNCTI ON_LI ST_PTR_PTR ppFuncti onLi st

) |

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers.
ppFunctionList points to a value which will receive a pointer to the library’s
CK_FUNCTION_LIST structure, which in turn contains function pointers for all the
Cryptoki API routines in the library. The pointer thus obtained may point into memory
which is owned by the Cryptoki library, and which may or may not be writable. Whether
or not this is the case, no attempt should be made to write to this memory.

C_GetFunctionList is the only Cryptoki function which an application may call before
calling C_Initialize. It is provided to make it easier and faster for applications to use
shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

Return  values: ~ CKR_ARGUMENTS BAD,  CKR _FUNCTION FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK.

Example:

CK_FUNCTI ON_LI ST_PTR pFuncti onLi st ;

CK Clnitialize pClnitialize;

CK_ RV ryv;

/* 1t’s OKto call C_CGetFunctionList before calling
Clnitialize */

rv = C _Get FunctionLi st (&pFuncti onLi st);

assert(rv == CKR_(X);

pC Initialize = pFunctionList -> C Initialize;

/* Call the Clnitialize function in the library */
rv = (*pC_Initialize)(NUL_PTR);

11.5 Slot and token management functions

Cryptoki provides the following functions for slot and token management:

¢ C _GetSlotList

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Sl ot Li st)(
CK_BBOCL t okenPresent,
CK_SLOT_I D_PTR pSl ot Li st
CK_ULONG_PTR pul Count

)

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 107

C_GetSlotList is used to obtain a list of slots in the system. fokenPresent indicates
whether the list obtained includes only those slots with a token present (CK_TRUE), or
all slots (CK_FALSE); pulCount points to the location that receives the number of slots.

There are two ways for an application to call C_GetSlotList:

1. If pSlotList is NULL PTR, then all that C_GetSlotList does is return (in *pul/Count)
the number of slots, without actually returning a list of slots. The contents of the
buffer pointed to by pulCount on entry to C_GetSlotList has no meaning in this case,
and the call returns the value CKR OK.

2. If pSlotList is not NULL PTR, then *pul/Count must contain the size (in terms of
CK_SLOT_ID elements) of the buffer pointed to by pSlotList. If that buffer is large
enough to hold the list of slots, then the list is returned in it, and CKR OK is
returned. If not, then the call to C_GetSlotList returns the value
CKR BUFFER TOO SMALL. In either case, the value *pulCount is set to hold the
number of slots.

Because C_GetSlotList does not allocate any space of its own, an application will often
call C_GetSlotList twice (or sometimes even more times—if an application is trying to
get a list of all slots with a token present, then the number of such slots can
(unfortunately) change between when the application asks for how many such slots there
are and when the application asks for the slots themselves). However, multiple calls to
C_GetSlotList are by no means required.

All slots which C_GetSlotList reports must be able to be queried as valid slots by
C_GetSlotInfo. Furthermore, the set of slots accessible through a Cryptoki library is
checked at the time that C_GetSlotList, for list length prediction (NULL pSlotList
argument) is called. If an application calls C_GetSlotList with a non-NULL pSlotList,
and then the user adds or removes a hardware device, the changed slot list will only be
visible and effective if C_GetSlotList is called again with NULL. Even if C_
GetSlotList is successfully called this way, it may or may not be the case that the
changed slot list will be successfully recognized depending on the library
implementation. On some platforms, or earlier PKCS11 compliant libraries, it may be
necessary to successfully call C_Initialize or to restart the entire system.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER _TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR_FUNCTION FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK.

Example:

CK_ULONG ul Sl ot Count, ul Sl ot Wt hTokenCount ;
CK _SLOT_|I D PTR pSl otList, pSlotWthTokenLi st;
CK RV ryv;

/* Get list of all slots */

June 2004 Copyright © 2004 RSA Security Inc.



108 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

rv = C GetSlotList(CK FALSE, NULL_PTR, &ul Sl ot Count);
if (rv == CKR_XK) {
pSl ot Li st =
(CK_SLOT_I D PTR)
mal | oc(ul Sl ot Count *si zeof (CK_SLOT_I D)) ;
C Get SlotList(CK FALSE, pSlotList, &ulSlotCount);
rv == CKR_K) {
Now use that list of all slots */

rv
i f

|

/

}

free(pSlotList);
}

/* Get list of all slots with a token present */
pSl ot Wt hTokenLi st = (CK_SLOT_I D PTR) mal | oc(0);
ul Sl ot Wt hTokenCount = O;
while (1) {
rv = C Get SlotList(
CK_TRUE, pSlotWthTokenList, ul SlotWthTokenCount);
if (rv !'= CKR_BUFFER _TOO SMALL)
br eak;
pSl ot Wt hTokenLi st = real | oc(
pSl ot Wt hTokenLi st ,
ul Sl ot Wt hTokenLi st *si zeof (CK_SLOT_ID));

}

if (rv == CKR_.OK) {
/* Now use that list of all slots with a token present
*/

}
free(pSl ot Wt hTokenLi st) ;

¢ C _GetSlotInfo

CK_DEFI NE_FUNCTI ON( CK_RV, C Get Sl ot I nfo)(
CK_SLOT_ID slotlD,
CK_SLOT_I NFO_PTR pl nfo

) |

C_GetSlotInfo obtains information about a particular slot in the system. slot/D is the ID
of the slot; pInfo points to the location that receives the slot information.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST MEMORY, CKR_OK, CKR_SLOT ID INVALID.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 109

Example: see C_GetTokenInfo.

¢ C _GetTokenlInfo

CK_DEFI NE_FUNCTI ON( CK_RV, C_Cet Tokenl nf o) (
CK_SLOT_I D sl otl D,
CK_TOKEN_I NFO_PTR pl nfo

) ;

C_GetTokenlInfo obtains information about a particular token in the system. slotID is
the ID of the token’s slot; p/nfo points to the location that receives the token information.

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_SLOT ID INVALID, CKR TOKEN NOT PRESENT,
CKR_TOKEN NOT RECOGNIZED, CKR_ ARGUMENTS BAD.

Example:

CK_ULONG ul Count ;
CK_SLOT_I D_PTR pSl ot Li st ;
CK _SLOT I NFO sl ot I nf o;
CK_TOKEN_I NFO t okenl nf o;
CK_ RV rv;

rv = C_GetSlotList(CK FALSE, NULL_PTR &ul Count);
if ((rv == CKR_.OK) && (ul Count > 0)) {
pSlotList = (CK_SLOT_I D PTR)
mal | oc(ul Count *si zeof (CK_SLOT_ID));
rv = C GetSlotList(CK FALSE, pSlotlList, &ulCount);
assert(rv == CKR_XK);

/* Get slot information for first slot */
rv = C GetSlotInfo(pSlotList[O0], &slotlnfo);
assert(rv == CKR_XK);

/* Get token information for first slot */

rv = C _Get Tokenl nfo(pSlotList[0], &tokenlnfo);
if (rv == CKR_TOKEN NOT_PRESENT) {

l;ree(pSI ot List);

June 2004 Copyright © 2004 RSA Security Inc.




110 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_WaitForSlotEvent

CK_DEFI NE_FUNCTI ON( CK_RV, C Wit For Sl ot Event) (
CK_FLAGS f 1 ags,
CK_SLOT_I D_PTR pSl ot
CK_ VA D _PTR pReserved

);

C_WaitForSlotEvent waits for a slot event, such as token insertion or token removal, to
occur. flags determines whether or not the C_WaitForSlotEvent call blocks (i.e., waits
for a slot event to occur); pSlot points to a location which will receive the ID of the slot
that the event occurred in. pReserved is reserved for future versions; for this version of
Cryptoki, it should be NULL PTR.

At present, the only flag defined for use in the flags argument is CKF_DONT_ BLOCK:

Internally, each Cryptoki application has a flag for each slot which is used to track
whether or not any unrecognized events involving that slot have occurred. When an
application initially calls C_Initialize, every slot’s event flag is cleared. Whenever a slot
event occurs, the flag corresponding to the slot in which the event occurred is set.

If C_WaitForSlotEvent is called with the CKF DONT_BLOCK flag set in the flags
argument, and some slot’s event flag is set, then that event flag is cleared, and the call
returns with the ID of that slot in the location pointed to by pSlot. If more than one slot’s
event flag is set at the time of the call, one such slot is chosen by the library to have its
event flag cleared and to have its slot ID returned.

If C_WaitForSlotEvent is called with the CKF_ DONT_BLOCK flag set in the flags
argument, and no slot’s event flag is set, then the call returns with the value
CKR NO EVENT. In this case, the contents of the location pointed to by pSlot when
C_WaitForSlotEvent are undefined.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag clear in the flags
argument, then the call behaves as above, except that it will block. That is, if no slot’s
event flag is set at the time of the call, C_WaitForSlotEvent will wait until some slot’s
event flag becomes set. If a thread of an application has a C_WaitForSlotEvent call
blocking when another thread of that application calls C_Finalize, the
C_WaitForSlotEvent call returns with the value
CKR CRYPTOKI NOT INITIALIZED.

Although the parameters supplied to C Initialize can in general allow for safe multi-
threaded access to a Cryptoki library, C_WaitForSlotEvent is exceptional in that the
behavior of Cryptoki is undefined if multiple threads of a single application make
simultaneous calls to C_WaitForSlotEvent.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR _NO EVENT, CKR OK.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 111

Example:

CK_FLAGS flags = 0;
CK SLOT_ID slotlD;
CK_SLOT_|I NFO sl ot | nf o;

)* Bl ock and wait for a slot event */
rv = C WaitForSlotEvent (flags, &slotlD, NULL_PTR);
assert(rv == CKR_X);

/* See what’s up with that slot */
rv = C GetSlotInfo(slotlID, &slotlnfo);
assert(rv == CKR_X);

¢ C_GetMechanismList

CK_DEFI NE_FUNCTI ON( CK_RV, C_Get Mechani snii st ) (

CK_SLOT I D slotlD,
CK_MECHANI SM TYPE_PTR pMechani snii st
CK_ULONG_PTR pul Count

) |

C_GetMechanismList is used to obtain a list of mechanism types supported by a token.
SlotID is the ID of the token’s slot; pulCount points to the location that receives the
number of mechanisms.

There are two ways for an application to call C_GetMechanismList:

1.

If pMechanismList is NULL PTR, then all that C_GetMechanismList does is return
(in *pulCount) the number of mechanisms, without actually returning a list of
mechanisms. The contents of *pul/Count on entry to C_GetMechanismList has no
meaning in this case, and the call returns the value CKR OK.

If pMechanismList is not NULL PTR, then *pul/Count must contain the size (in terms
of CK MECHANISM TYPE clements) of the buffer pointed to by
pMechanismList. If that buffer is large enough to hold the list of mechanisms, then
the list is returned in it, and CKR OK is returned. If not, then the call to
C_GetMechanismList returns the value CKR_BUFFER TOO SMALL. In either
case, the value *pulCount is set to hold the number of mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an application
will often call C_GetMechanismList twice. However, this behavior is by no means
required.

June 2004 Copyright © 2004 RSA Security Inc.




112 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Return values: CKR_BUFFER TOO SMALL,

CKR _CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,

CKR _DEVICE MEMORY, CKR DEVICE REMOVED, CKR FUNCTION FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_SLOT ID INVALID, CKR TOKEN NOT PRESENT,

CKR TOKEN NOT RECOGNIZED, CKR_ARGUMENTS BAD.

Example:

CK_SLOT_ID slotlD

CK_ULONG ul Count ;
CK_MECHANI SM TYPE_PTR pMechani snii st ;
CK_RV rv;

rv = C_Get Mechani snlist(slotl D, NULL_PTR, &ul Count);
if ((rv == CKR.OK) && (ul Count > 0)) {
pMechani snii st =
( CK_MECHANI SM TYPE_PTR)
mal | oc(ul Count *si zeof (CK_MECHANI SM TYPE) ) ;
rv = C_Get Mechani snii st (slotlD, pMechanisnList,
&ul Count) ;
if (rv == CKR_.K) {

}
free(pMechani snii st);

}

¢ C_GetMechanismInfo

CK_DEFI NE_FUNCTI ON( CK_RV, C_Cet Mechani smi nf o) (
CK_SLOT_ID slotlD,
CK_MECHANI SM TYPE t ype,
CK_MECHANI SM_| NFO_PTR pl nf o

)|

C_GetMechanismInfo obtains information about a particular mechanism possibly
supported by a token. slotID is the ID of the token’s slot; type is the type of mechanism;
plnfo points to the location that receives the mechanism information.

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_ FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_MECHANISM_INVALID,
CKR_OK, CKR SLOT ID INVALID, CKR_ TOKEN NOT PRESENT,
CKR_TOKEN NOT RECOGNIZED, CKR_ ARGUMENTS BAD.

Example:

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 113

CK SLOT_ID slotlD
CK_MECHANI SM | NFO i nf o;
CK RV rv;

/* Get information about the CKM MD2 nmechanismfor this
t oken */
rv = C_Get Mechani smi nfo(slotl D, CKMM2, & nfo);
if (rv == CKR_OX)
if (info.flags & CKF_DI GEST) {

}
}

¢ C _InitToken

CK_DEFI NE_FUNCTI ON(CK_RV, C_InitToken) (
CK_SLOT_I D sl ot 1D,
CK_UTF8CHAR _PTR pPi n,
CK_ULONG ul Pi nLen,
CK_UTF8CHAR_PTR pLabel

)

C _InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the
SO’s initial PIN (which need not be null-terminated); u/PinLen is the length in bytes of
the PIN; pLabel points to the 32-byte label of the token (which must be padded with
blank characters, and which must not be null-terminated). This standard allows PIN
values to contain any valid UTFS character, but the token may impose subset restrictions.

If the token has not been initialized (i.e. new from the factory), then the pPin parameter
becomes the initial value of the SO PIN. If the token is being reinitialized, the pPin
parameter is checked against the existing SO PIN to authorize the initialization operation.
In both cases, the SO PIN is the value pPin after the function completes successfully. If
the SO PIN is lost, then the card must be reinitialized using a mechanism outside the
scope of this standard. The CKF_TOKEN_INITIALIZED flag in the
CK_TOKEN_INFO structure indicates the action that will result from calling
C_InitToken. If set, the token will be reinitialized, and the client must supply the
existing SO password in pPin.

When a token is initialized, all objects that can be destroyed are destroyed (i.e., all except
for “indestructible” objects such as keys built into the token). Also, access by the normal
user is disabled until the SO sets the normal user’s PIN. Depending on the token, some
“default” objects may be created, and attributes of some objects may be set to default
values.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED AUTHENTICATION _PATH flag in its CK_TOKEN_INFO

June 2004 Copyright © 2004 RSA Security Inc.




114 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initialize a token with such a protected authentication path, the pPin
parameter to C_InitToken should be NULL PTR. During the execution of
C_InitToken, the SO’s PIN will be entered through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_InitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects that any application has an open session
with it; when a call to C_InitToken is made under such circumstances, the call fails with
error CKR_SESSION EXISTS. Unfortunately, it may happen when C_InitToken is
called that some other application does have an open session with the token, but Cryptoki
cannot detect this, because it cannot detect anything about other applications using the
token. If this is the case, then the consequences of the C_InitToken call are undefined.

The C_InitToken function may not be sufficient to properly initialize complex tokens. In
these situations, an initialization mechanism outside the scope of Cryptoki must be
employed. The definition of “complex token” is product specific.

Return values: CKR_CRYPTOKI _NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,

CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK,
CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_EXISTS,
CKR_SLOT ID_INVALID, CKR_ TOKEN NOT PRESENT,
CKR_TOKEN NOT RECOGNIZED, CKR_TOKEN WRITE PROTECTED,
CKR_ARGUMENTS BAD.

Example:

CK_SLOT_ID slot!D;
CK_UTF8CHAR PTR pin = “M/PIN’;
CK_UTFSCHAR | abel [ 32] ;

CK_RV rv;

menset (1 abel , * ', sizeof(label)):

mencpy(l abel, “My first token”, strlien(“My first
t oken”));

rv = C_ InitToken(slotlD, pin, strlen(pin), |abel);
if (rv == CKR_.OXK) {

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 115

¢ C_InitPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C I nitPIN)(
CK_SESSI ON_HANDLE hSessi on,
CK_UTF8CHAR_PTR pPi n,

CK_ULONG ul Pi nLen
);

C_InitPIN initializes the normal user’s PIN. ASession is the session’s handle; pPin
points to the normal user’s PIN; u/PinLen is the length in bytes of the PIN. This standard
allows PIN values to contain any valid UTF8 character, but the token may impose subset
restrictions.

C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it
from a session in any other state fails with error CKR_USER NOT LOGGED IN.

If the token has a “protected authentication path”, as indicated by the
CKF PROTECTED AUTHENTICATION PATH flag in its CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initialize the normal user’s PIN on a token with such a protected
authentication path, the pPin parameter to C_InitPIN should be NULL PTR. During the
execution of C_InitPIN, the SO will enter the new PIN through the protected
authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_InitPIN can be used to initialize the normal user’s token
access.

Return values: CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,

CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ ONLY,
CKR_SESSION_HANDLE INVALID, CKR TOKEN WRITE PROTECTED,
CKR_USER NOT LOGGED IN, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_UTF8CHAR newPi n[] = {"“ NewPI N'};
CK RV rv;

rv = C.InitPlI N hSession, newPin, sizeof(newPin));
if (rv == CKR_XK) {

June 2004 Copyright © 2004 RSA Security Inc.




116 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_SetPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C _Set PI'N) (
CK_SESSI ON_HANDLE hSessi on,
CK_UTF8CHAR_PTR pd dPi n,

CK_ULONG ul d dLen,
CK_UTF8CHAR PTR pNewPi n,
CK_ULONG ul NewLen
);

C_SetPIN modifies the PIN of the user that is currently logged in, or the CKU USER
PIN if the session is not logged in. ASession is the session’s handle; pOIldPin points to
the old PIN; ulOldLen is the length in bytes of the old PIN; pNewPin points to the new
PIN; ulNewLen is the length in bytes of the new PIN. This standard allows PIN values to
contain any valid UTF8 character, but the token may impose subset restrictions.

C_SetPIN can only be called in the “R/W Public Session” state, “R/W SO Functions”
state, or “R/W User Functions” state. An attempt to call it from a session in any other
state fails with error CKR_SESSION READ ONLY.

If the token has a “protected authentication path”, as indicated by the
CKF PROTECTED AUTHENTICATION PATH flag in its CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To modify the current user’s PIN on a token with such a protected authentication
path, the pOIdPin and pNewPin parameters to C_SetPIN should be NULL PTR. During
the execution of C_SetPIN, the current user will enter the old PIN and the new PIN
through the protected authentication path. It is not specified how the PINpad should be
used to enter two PINs; this varies.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_SetPIN can be used to modify the current user’s PIN.

Return values: CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,

CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN LEN RANGE,
CKR_PIN_LOCKED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID, CKR SESSION READ ONLY,
CKR_TOKEN WRITE PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_UTF8CHAR ol dPin[] = {“A dPIN'};
CK_UTF8CHAR newPin[] = {“NewPI N'};

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 117

CK_ RV rv;
rv = C_Set PI N
hSessi on, ol dPin, sizeof(oldPin), newPin,

si zeof (newPi n)) ;
if (rv == CKR_XK) {

}
11.6 Session management functions

A typical application might perform the following series of steps to make use of a token
(note that there are other reasonable sequences of events that an application might
perform):

1. Select a token.

2. Make one or more calls to C_OpenSession to obtain one or more sessions with the
token.

3. Call C_Login to log the user into the token. Since all sessions an application has
with a token have a shared login state, C_Login only needs to be called for one of the
sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Call C_CloseSession once for each session that the application has with the token, or
call C_CloseAllSessions to close all the application’s sessions simultaneously.

As has been observed, an application may have concurrent sessions with more than one
token. It is also possible for a token to have concurrent sessions with more than one
application.

Cryptoki provides the following functions for session management:

¢ C _OpenSession

CK_DEFI NE_FUNCTI ON( CK_RV, C _OpenSessi on) (
CK_SLOT_I D sl otl D,
CK_FLAGS f 1 ags,
CK_VA D_PTR pApplicati on,
CK_NOTI FY Noti fy,
CK_SESSI ON_HANDLE PTR phSessi on

) |

C_OpenSession opens a session between an application and a token in a particular slot.
slotID is the slot’s ID; flags indicates the type of session; pApplication is an application-

June 2004 Copyright © 2004 RSA Security Inc.




118 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

defined pointer to be passed to the notification callback; Notify is the address of the
notification callback function (see Section 11.17); phSession points to the location that
receives the handle for the new session.

When opening a session with C_OpenSession, the flags parameter consists of the logical
OR of zero or more bit flags defined in the CK_SESSION_INFO data type. For legacy
reasons, the CKF_SERIAL _SESSION bit must always be set; if a call to
C_OpenSession does not have this bit set, the call should return unsuccessfully with the
error code CKR_ PARALLEL NOT SUPPORTED.

There may be a limit on the number of concurrent sessions an application may have with
the token, which may depend on whether the session is “read-only” or “read/write”. An
attempt to open a session which does not succeed because there are too many existing
sessions of some type should return CKR_SESSION COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then
only read-only sessions may be opened with it.

If the application calling C_OpenSession already has a R/W SO session open with the
token, then any attempt to open a R/O session with the token fails with error code
CKR_SESSION READ WRITE SO _EXISTS (see Section 6.7.7).

The Notify callback function is used by Cryptoki to notify the application of certain
events. If the application does not wish to support callbacks, it should pass a value of
NULL_PTR as the Notify parameter. See Section 11.17 for more information about
application callbacks.

Return values: CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_SESSION_COUNT, CKR_SESSION_PARALLEL NOT SUPPORTED,
CKR_SESSION_READ WRITE SO_EXISTS, CKR_SLOT ID INVALID,
CKR_TOKEN NOT PRESENT, CKR_ TOKEN NOT RECOGNIZED,
CKR_TOKEN WRITE PROTECTED, CKR_ ARGUMENTS BAD.

Example: see C_CloseSession.

¢ C_CloseSession

CK_DEFI NE_FUNCTI ON( CK_RV, C_C oseSessi on) (
CK_SESSI ON_ HANDLE hSessi on

)

C_CloseSession closes a session between an application and a token. AhSession is the
session’s handle.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 119

When a session is closed, all session objects created by the session are destroyed
automatically, even if the application has other sessions “using” the objects (see Sections
6.7.5-6.7.7 for more details).

If this function is successful and it closes the last session between the application and the
token, the login state of the token for the application returns to public sessions. Any new
sessions to the token opened by the application will be either R/O Public or R/W Public
sessions.

Depending on the token, when the last open session any application has with the token is
closed, the token may be “ejected” from its reader (if this capability exists).

Despite the fact this C_CloseSession is supposed to close a session, the return value
CKR_SESSION CLOSED is an error return. It actually indicates the (probably
somewhat unlikely) event that while this function call was executing, another call was
made to C_CloseSession to close this particular session, and that call finished executing
first. Such uses of sessions are a bad idea, and Cryptoki makes little promise of what will
occur in general if an application indulges in this sort of behavior.

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE INVALID.

Example:

CK_SLOT_I D slotlD;

CK_BYTE application;
CK_NOTI FY MyNot i fy;
CK_SESSI ON_HANDLE hSessi on;
CK RV rv;

application = 17;
MyNotify = &Encrypti onSessi onCal | back;
rv = C _OpenSessi on(
slot|1 D, CKF_SERI AL_SESSI ON | CKF_RW SESSI ON,
(CK_ VO D PTR) &application, MyNotify,
&hSessi on) ;
if (rv == CKR_.OK) {

C_CI oseSessi on( hSessi on);

}

June 2004 Copyright © 2004 RSA Security Inc.



120 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_CloseAllSessions

CK_DEFI NE_FUNCTI ON(CK_RV, C _C oseAl | Sessi ons) (
CK SLOT ID slotID
);

C_CloseAllSessions closes all sessions an application has with a token. slotID specifies
the token’s slot.

When a session is closed, all session objects created by the session are destroyed
automatically.

After successful execution of this function, the login state of the token for the application
returns to public sessions. Any new sessions to the token opened by the application will
be either R/O Public or R/W Public sessions.

Depending on the token, when the last open session any application has with the token is
closed, the token may be “ejected” from its reader (if this capability exists).

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_SLOT ID INVALID, CKR_ TOKEN NOT PRESENT.

Example:

CK SLOT I D slotlD;
CK RV ryv;

'rv = C O oseAl | Sessions(slotlD);

¢ C_GetSessionlnfo

CK_DEFI NE_FUNCTI ON( CK_RV, C_Get Sessi onl nf o) (
CK_SESSI ON_HANDLE hSessi on,
CK_SESSI ON_| NFO PTR pl nfo

) |

C_GetSessionInfo obtains information about a session. ASession is the session’s handle;
plnfo points to the location that receives the session information.

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,

CKR_SESSION CLOSED, CKR_SESSION_ HANDLE INVALID,
CKR_ARGUMENTS BAD.

Example:

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 121

CK_SESSI ON_HANDLE hSessi on;
CK_SESSI ON_I NFO i nf o;
CK RV rv;

= C_Cet Sessi onl nfo(hSessi on, & nfo);
(rv == CKR_X) {
if (info.state == CKS_RW USER FUNCTI ONS) {

rv
i f

}

¢ C_GetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C GetOperationState) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pQperati onSt at e,
CK_ULONG_PTR pul Oper ati onSt at eLen

) |

C_GetOperationState obtains a copy of the cryptographic operations state of a session,
encoded as a string of bytes. AhSession is the session’s handle; pOperationState points to
the location that receives the state; pulOperationStateLen points to the location that
receives the length in bytes of the state.

Although the saved state output by C_GetOperationState is not really produced by a
“cryptographic mechanism”, C_GetOperationState nonetheless uses the convention
described in Section 11.2 on producing output.

Precisely what the “cryptographic operations state” this function saves is varies from
token to token; however, this state is what is provided as input to C_SetOperationState
to restore the cryptographic activities of a session.

Consider a session which is performing a message digest operation using SHA-1 (i.e., the
session is using the CKM_SHA 1 mechanism). Suppose that the message digest
operation was initialized properly, and that precisely 80 bytes of data have been supplied
so far as input to SHA-1. The application now wants to “save the state” of this digest
operation, so that it can continue it later. In this particular case, since SHA-1 processes
512 bits (64 bytes) of input at a time, the cryptographic operations state of the session
most likely consists of three distinct parts: the state of SHA-1’s 160-bit internal chaining
variable; the 16 bytes of unprocessed input data; and some administrative data indicating
that this saved state comes from a session which was performing SHA-1 hashing. Taken
together, these three pieces of information suffice to continue the current hashing
operation at a later time.

June 2004 Copyright © 2004 RSA Security Inc.




122 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Consider next a session which is performing an encryption operation with DES (a block
cipher with a block size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session
is using the CKM_DES_CBC mechanism). Suppose that precisely 22 bytes of data (in
addition to an IV for the CBC mode) have been supplied so far as input to DES, which
means that the first two 8-byte blocks of ciphertext have already been produced and
output. In this case, the cryptographic operations state of the session most likely consists
of three or four distinct parts: the second 8-byte block of ciphertext (this will be used for
cipher-block chaining to produce the next block of ciphertext); the 6 bytes of data still
awaiting encryption; some administrative data indicating that this saved state comes from
a session which was performing DES encryption in CBC mode; and possibly the DES
key being used for encryption (see C_SetOperationState for more information on
whether or not the key is present in the saved state).

If a session is performing two cryptographic operations simultaneously (see Section
11.13), then the cryptographic operations state of the session will contain all the
necessary information to restore both operations.

An attempt to save the cryptographic operations state of a session which does not
currently have some active savable cryptographic operation(s) (encryption, decryption,
digesting, signing without message recovery, verification without message recovery, or
some legal combination of two of these) should fail with the error
CKR_OPERATION NOT _INITIALIZED.

An attempt to save the cryptographic operations state of a session which is performing an
appropriate cryptographic operation (or two), but which cannot be satisfied for any of
various reasons (certain necessary state information and/or key information can’t leave
the token, for example) should fail with the error CKR_STATE UNSAVEABLE.

Return values: CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI NOT _INITIALIZED, CKR_DEVICE ERROR,

CKR_DEVICE MEMORY, CKR DEVICE REMOVED, CKR FUNCTION FAILED,
CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION _HANDLE INVALID, CKR_STATE UNSAVEABLE,
CKR_ARGUMENTS BAD.

Example: see C_SetOperationState.

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 123

¢ C_SetOperationState

CK_DEFI NE_FUNCTI ON( CK_RV, C _Set OperationState) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pQper ati onSt at e,
CK_ULONG ul Qper ati onSt at eLen,
CK_OBJECT_HANDLE hEncrypti onKey,
CK_OBJECT_HANDLE hAut henti cati onKey

) |

C_SetOperationState restores the cryptographic operations state of a session from a
string of bytes obtained with C_GetOperationState. ASession is the session’s handle;
pOperationState points to the location holding the saved state; ulOperationStateLen
holds the length of the saved state; hEncryptionKey holds a handle to the key which will
be used for an ongoing encryption or decryption operation in the restored session (or 0 if
no encryption or decryption key is needed, either because no such operation is ongoing in
the stored session or because all the necessary key information is present in the saved
state); hAuthenticationKey holds a handle to the key which will be used for an ongoing
signature, MACing, or verification operation in the restored session (or 0 if no such key
is needed, either because no such operation is ongoing in the stored session or because all
the necessary key information is present in the saved state).

The state need not have been obtained from the same session (the “source session”) as it
is being restored to (the “destination session”). However, the source session and
destination  session  should have a common  session state (e.g.,
CKS_RW_USER FUNCTIONS), and should be with a common token. There is also no
guarantee that cryptographic operations state may be carried across logins, or across
different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state
which it can determine is not valid saved state (or is cryptographic operations state from
a session with a different session state, or is cryptographic operations state from a
different token), it fails with the error CKR_SAVED STATE INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain
information about keys in use for ongoing cryptographic operations. If a saved
cryptographic operations state has an ongoing encryption or decryption operation, and the
key in use for the operation is not saved in the state, then it must be supplied to
C_SetOperationState in the #hEncryptionKey argument. If it is not, then
C_SetOperationState will fail and return the error CKR_KEY NEEDED. If the key in
use for the operation is saved in the state, then it can be supplied in the hEncryptionKey
argument, but this is not required.

Similarly, if a saved cryptographic operations state has an ongoing signature, MACing,
or verification operation, and the key in use for the operation is not saved in the state,
then it must be supplied to C_SetOperationState in the hAuthenticationKey argument.
If it is not, then C_SetOperationState will fail with the error CKR_KEY NEEDED. If

June 2004 Copyright © 2004 RSA Security Inc.




124 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

the key in use for the operation is saved in the state, then it can be supplied in the
hAuthenticationKey argument, but this is not required.

If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key handle
is submitted in the AEncryptionKey argument, but the saved cryptographic operations
state supplied does not have an ongoing encryption or decryption operation, then
C_SetOperationState fails with the error CKR_ KEY NOT NEEDED.

If a key is supplied as an argument to C_SetOperationState, and C_SetOperationState
can somehow detect that this key was not the key being used in the source session for the
supplied cryptographic operations state (it may be able to detect this if the key or a hash
of the key is present in the saved state, for example), then C_SetOperationState fails
with the error CKR_KEY CHANGED.

An application can look at the CKF_RESTORE KEY NOT _NEEDED flag in the
flags field of the CK_TOKEN_INFO field for a token to determine whether or not it
needs to supply key handles to C_SetOperationState calls. If this flag is true, then a call
to C_SetOperationState never needs a key handle to be supplied to it. If this flag is
false, then at least some of the time, C_SetOperationState requires a key handle, and so
the application should probably always pass in any relevant key handles when restoring
cryptographic operations state to a session.

C_SetOperationState can successfully restore cryptographic operations state to a
session even if that session has active cryptographic or object search operations when
C_SetOperationState is called (the ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI _NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR HOST MEMORY, CKR KEY CHANGED,
CKR_KEY NEEDED, CKR KEY NOT NEEDED, CKR OK,

CKR_SAVED STATE_INVALID, CKR_SESSION_CLOSED,

CKR_SESSION _HANDLE INVALID, CKR_ARGUMENTS BAD.

Example:

CK_SESSI ON_ HANDLE hSessi on;

CK_MECHANI SM di gest Mechani sm

CK_ULONG ul St at eLen;

CK_BYTE datal[] = {0x01, 0x03, 0x05, 0x07};
CK_BYTE dat a2[] {0x02, 0x04, 0x08};

CK_BYTE data3[] = {0x10, OxOF, OxOE, Ox0D, 0x0C};
CK_BYTE pDi gest [ 20];

CK_ULONG ul Di gest Len;

CK RV ryv;

/* Initialize hash operation */

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 125

rv = C Digestlnit(hSession, &digestMchanisn;
assert(rv == CKR_(X);

[* Start hashing */
rv = C _Digest Update( hSessi on, datal, sizeof(datal));
assert(rv == CKR_(X);

/* Find out how big the state m ght be */

rv = C _GetOperationState(hSession, NULL_PTR
&ul St at eLen) ;

assert(rv == CKR_(X);

[* Allocate sone nenory and then get the state */
pState = (CK BYTE_PTR) mal | oc(ul St at eLen);
rv = C GetOperationState(hSession, pState, &ul Statelen);

/* Continue hashing */
rv = C_DigestUpdat e( hSessi on, data2, sizeof(data2));
assert(rv == CKR_XK);

/* Restore state. No key handl es needed */

rv = C _Set OperationState(hSession, pState, ul StatelLen, 0,
0);

assert(rv == CKR_X);

/* Continue hashing fromwhere we saved state */
rv = C_DigestUpdat e(hSession, data3, sizeof(data3));
assert(rv == CKR_X);

/* Concl ude hashi ng operation */
ul Di gest Len = si zeof (pDi gest);
rv = C_DigestFinal (hSession, pDigest, &ulDigestLen);
if (rv == CKR_.OK) {
/* pDigest[] now contains the hash of
0x01030507100FOEODOC */

}

¢ C_Login

CK_DEFI NE_FUNCTI ON( CK_RV, C_Logi n) (

) |

CK_SESSI ON_ HANDLE hSessi on,
CK_USER _TYPE user Type,
CK_UTF8CHAR _PTR pPi n,
CK_ULONG ul Pi nLen

C_Login logs a user into a token. ASession is a session handle; userType is the user type;
pPin points to the user’s PIN; ulPinLen is the length of the PIN. This standard allows

June 2004 Copyright © 2004 RSA Security Inc.




126 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

PIN values to contain any valid UTF8 character, but the token may impose subset
restrictions.

When the user type is either CKU SO or CKU USER, if the call succeeds, each of the
application's sessions will enter either the "R/W SO Functions" state, the "R/W User
Functions" state, or the "R/O User Functions" state. If the user type is
CKU_CONTEXT _SPECIFIC , the behavior of C_Login depends on the context in which
it is called. Improper use of this user type will result in a return value
CKR_OPERATION NOT_INITIALIZED..

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED AUTHENTICATION PATH flag in its CK_TOKEN_INFO
being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. Or the user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected
authentication path, the pPin parameter to C_Login should be NULL PTR. When
C_Login returns, whatever authentication method supported by the token will have been
performed; a return value of CKR OK means that the user was successfully
authenticated, and a return value of CKR PIN INCORRECT means that the user was
denied access.

If there are any active cryptographic or object finding operations in an application’s
session, and then C_Login is successfully executed by that application, it may or may not
be the case that those operations are still active. Therefore, before logging in, any active
operations should be finished.

If the application calling C_Login has a R/O session open with the token, then it will be
unable to log the SO into a session (see Section 6.7.7). An attempt to do this will result
in the error code CKR_SESSION READ ONLY EXISTS.

C_Login may be called repeatedly, without intervening C_Logout calls, if (and only if) a
key with the CKA ALWAYS AUTHENTICATE attribute set to CK_TRUE exists, and
the user needs to do cryptographic operation on this key. See further Section 10.9.

Return values: CKR_ ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE ERROR, CKR DEVICE MEMORY, CKR DEVICE REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION NOT INITIALIZED, CKR PIN INCORRECT,

CKR_PIN LOCKED, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION READ ONLY_ EXISTS,
CKR_USER_ALREADY LOGGED IN,
CKR_USER_ANOTHER ALREADY LOGGED IN,
CKR_USER PIN NOT INITIALIZED, CKR USER TOO MANY TYPES,
CKR_USER_TYPE_INVALID.

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 127

Example: see C_Logout.

¢ C Logout

CK_DEFI NE_FUNCTI ON(CK_RV, C_Logout) (
CK_SESSI ON_HANDLE hSessi on
);

C_Logout logs a user out from a token. ASession is the session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s
sessions will enter either the “R/W Public Session” state or the “R/O Public Session”
state.

When C_Logout successfully executes, any of the application’s handles to private
objects become invalid (even if a user is later logged back into the token, those handles
remain invalid). In addition, all private session objects from sessions belonging to the
application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s
session, and then C_Logout is successfully executed by that application, it may or may
not be the case that those operations are still active. Therefore, before logging out, any
active operations should be finished.

Return values: CKR_CRYPTOKI _NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,

CKR_SESSION CLOSED, CKR_SESSION HANDLE INVALID,
CKR_USER_NOT_LOGGED IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_UTF8CHAR userPIN[] = {“M/PIN'};
CK RV rv;

rv = C _Logi n(hSession, CKU USER, userPIN,
si zeof (userPIN));
if (rv == CKR_XK) {

rv == C _Logout ( hSessi on);
if (rv == CKR_.OK) {

June 2004 Copyright © 2004 RSA Security Inc.




128 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

11.7 Object management functions

Cryptoki provides the following functions for managing objects. Additional functions
provided specifically for managing key objects are described in Section 11.14.

¢ C CreateObject

CK_DEFI NE_FUNCTI ON(CK_RV, C Create(bject) (
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phObj ect
)

C_CreateObject creates a new object. ASession is the session’s handle; pTemplate points
to the object’s template; u/Count is the number of attributes in the template; phObject
points to the location that receives the new object’s handle.

If a call to C_CreateObject cannot support the precise template supplied to it, it will fail
and return without creating any object.

If C_CreateObject is used to create a key object, the key object will have its
CKA_LOCAL attribute set to CK_FALSE. If that key object is a secret or private key
then the new key will have the CKA_ALWAYS SENSITIVE attribute set to
CK FALSE, and the CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user is logged in.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE TYPE INVALID, CKR ATTRIBUTE VALUE INVALID,
CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,

CKR_DEVICE MEMORY, CKR_DEVICE _REMOVED,
CKR_DOMAIN PARAMS INVALID, CKR_FUNCTION FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK, CKR PIN EXPIRED,
CKR_SESSION CLOSED, CKR_SESSION HANDLE INVALID,
CKR_SESSION_READ ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN WRITE PROTECTED,
CKR_USER NOT LOGGED _IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE

hDat a,

hCertificate,

hKey;
CK_OBJECT_CLASS

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 129

dat aCl ass = CKO_DATA,
certificateCl ass = CKO _CERTI FI CATE,
keyd ass = CKO _PUBLI C KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR application[] = {“My Application”’};
CK _BYTE dataValue[] = {...};
CK_BYTE subject[] = {...};
CK BYTE id[] ={...};
CK_BYTE certificateValue[] = {...};
CK _BYTE nmodul us[] = {...};
CK_BYTE exponent[] ={...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE dat aTenpl ate[] = {
{CKA CLASS, &datad ass, sizeof(datad ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, dataVal ue, sizeof(dataVval ue)}

CK_ATTRI BUTE certificateTenplate[] = {
{CKA CLASS, &certificated ass,
si zeof (certificated ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, certificateValue, sizeof(certificateValue)}

CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA WRAP, &true, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

}1
CK_ RV rv;

)* Create a data object */
rv = C Creat ebj ect (hSessi on, &dataTenpl ate, 4, &hData);
if (rv == CKR_.X) {

}

/* Create a certificate object */
rv = C Creat ehj ect (

hSessi on, &certificateTenplate, 5, &hCertificate);
if (rv == CKR_ XK) {

June 2004 Copyright © 2004 RSA Security Inc.



130 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}

/* Create an RSA public key object */
rv = C Createbj ect (hSessi on, &keyTenpl ate, 5, &hKey);
if (rv == CKR_.OK) {

}

¢ C _CopyObject

CK_DEFI NE_FUNCTI ON( CK_RV, C_CopyObj ect ) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hbj ect,

CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phNewObj ect
);

C_CopyObject copies an object, creating a new object for the copy. hSession is the
session’s handle; #Object is the object’s handle; pTemplate points to the template for the
new object; ul/Count is the number of attributes in the template; phNewObject points to
the location that receives the handle for the copy of the object.

The template may specify new values for any attributes of the object that can ordinarily
be modified (e.g., in the course of copying a secret key, a key’s CKA_EXTRACTABLE
attribute may be changed from CK_TRUE to CK_FALSE, but not the other way around.
If this change is made, the new key’s CKA_NEVER_EXTRACTABLE attribute will
have the value CK FALSE. Similarly, the template may specify that the new key’s
CKA_SENSITIVE attribute be CK_TRUE; the new key will have the same value for its
CKA ALWAYS SENSITIVE attribute as the original key). It may also specify new
values of the CKA TOKEN and CKA PRIVATE attributes (e.g., to copy a session
object to a token object). If the template specifies a value of an attribute which is
incompatible with other existing attributes of the object, the call fails with the return code
CKR _TEMPLATE INCONSISTENT.

If a call to C_CopyObject cannot support the precise template supplied to it, it will fail
and return without creating any object.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user is logged in.

Return values: CKR_ ARGUMENTS BAD, CKR_ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI NOT _INITIALIZED, CKR_DEVICE ERROR,

CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR HOST MEMORY,

CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED,

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 131

CKR_SESSION_CLOSED, CKR_SESSION HANDLE _INVALID,
CKR_SESSION READ ONLY, CKR TEMPLATE INCONSISTENT,
CKR_TOKEN WRITE PROTECTED, CKR_USER NOT LOGGED IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey, hNewKey;
CK_OBJECT_CLASS keyd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK BYTE id[] ={...};
CK_BYTE keyValue[] ={...};
CK_BBOCL fal se = CK_FALSE;
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE keyTenpl ate[] = {
{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &fal se, sizeof(false)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, keyVal ue, sizeof (keyVal ue)}

CK_ATTRI BUTE copyTenpl ate[] = {
{CKA TOKEN, &true, sizeof(true)}

}1
CK RV rv;

/* Create a DES secret key session object */
rv = C Createbj ect (hSessi on, &keyTenpl ate, 5, &hKey);
if (rv == CKR_.OK) {
/* Create a copy which is a token object */
rv = C_Copybj ect (hSessi on, hKey, &copyTenplate, 1,
&hNewkKey) ;

}

¢ C DestroyObject

CK_DEFI NE_FUNCTI ON( CK_RV, C Destroyject) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect

) |

C_DestroyObject destroys an object. ASession is the session’s handle; and hObject is
the object’s handle.

Only session objects can be destroyed during a read-only session. Only public objects
can be destroyed unless the normal user is logged in.

June 2004 Copyright © 2004 RSA Security Inc.




132 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OBJECT HANDLE INVALID, CKR_OK, CKR PIN_EXPIRED,
CKR_SESSION CLOSED, CKR_SESSION_HANDLE INVALID,
CKR_SESSION READ ONLY, CKR TOKEN WRITE PROTECTED.

Example: see C_GetObjectSize.

¢ C_GetObjectSize

CK_DEFI NE_FUNCTI ON( CK_RV, C Get Obj ect Si ze) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,

CK_ULONG_PTR pul Si ze

);

C_GetObjectSize gets the size of an object in bytes. ASession is the session’s handle;
hObject is the object’s handle; pulSize points to the location that receives the size in bytes
of the object.

Cryptoki does not specify what the precise meaning of an object’s size is. Intuitively, it
is some measure of how much token memory the object takes up. If an application
deletes (say) a private object of size S, it might be reasonable to assume that the
ulFreePrivateMemory field of the token’s CK_TOKEN_INFO structure increases by
approximately S.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE _ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION FAILED, CKR GENERAL ERROR, CKR HOST MEMORY,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT HANDLE INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE _INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect ;
CK_OBJECT_CLASS dat aCl ass = CKO _DATA;
CK_CHAR application[] = {“My Application”};
CK BYTE dataValue[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRI BUTE terrpl ate[] = {
{CKA CLASS, &datad ass, sizeof(datad ass)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, val ue, sizeof(value)}

}

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 133

CK_ULONG ul Si ze;
CK_ RV rv;

rv = C Createbj ect (hSession, & enplate, 4, & bject);
if (rv == CKR_X) {

rv = C _Get Obj ectSi ze(hSessi on, hQbject, &ulSize);

if (rv !'= CKR_| NFORMATI ON_SENSI TI VE) {

}
rv = C DestroyQbj ect (hSession, hQCbject);

}

¢ C_GetAttributeValue

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get Attri buteVal ue) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

) |

C_GetAttributeValue obtains the value of one or more attributes of an object. hSession
is the session’s handle; hObject is the object’s handle; pTemplate points to a template
that specifies which attribute values are to be obtained, and receives the attribute values;
ulCount is the number of attributes in the template.

For each (#ype, pValue, ulValueLen) triple in the template, C_GetAttributeValue
performs the following algorithm:

1. If the specified attribute (i.e., the attribute specified by the #ype field) for the object
cannot be revealed because the object is sensitive or unextractable, then the

ulValueLen field in that triple is modified to hold the value -1 (i.e., when it is cast to a
CK _LONG, it holds -1).

2. Otherwise, if the specified attribute for the object is invalid (the object does not
possess such an attribute), then the ulValueLen field in that triple is modified to hold
the value -1.

3. Otherwise, if the pValue field has the value NULL PTR, then the ul/ValueLen field is
modified to hold the exact length of the specified attribute for the object.

4. Otherwise, if the length specified in ulValueLen is large enough to hold the value of
the specified attribute for the object, then that attribute is copied into the buffer

June 2004 Copyright © 2004 RSA Security Inc.




134 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

located at pValue, and the ul/ValueLen field is modified to hold the exact length of the
attribute.

5. Otherwise, the ulValueLen field is modified to hold the value -1.

If case 1 applies to any of the requested attributes, then the call should return the value
CKR ATTRIBUTE SENSITIVE. If case 2 applies to any of the requested attributes,
then the call should return the value CKR_ATTRIBUTE TYPE INVALID. If case 5
applies to any of the requested attributes, then the call should return the wvalue
CKR BUFFER TOO SMALL. As usual, if more than one of these error codes is
applicable, Cryptoki may return any of them. Only if none of them applies to any of the
requested attributes will CKR_OK be returned.

In the special case of an attribute whose value is an array of attributes, for example
CKA WRAP TEMPLATE, where it is passed in with pValue not NULL, then if the
pValue of elements within the array is NULL PTR then the u/ValueLen of elements
within the array will be set to the required length. If the pValue of elements within the
array is not NULL PTR, then the u/ValueLen element of attributes within the array must
reflect the space that the corresponding pValue points to, and pValue is filled in if there is
sufficient room. Therefore it is important to initialize the contents of a buffer before
calling C_GetAttributeValue to get such an array value. If any ul/ValueLen within the
array isn't large enough, it will be set to —1 and the function will return
CKR BUFFER TOO SMALL, as it does if an attribute in the pTemplate argument has
ulValuelLen too small. Note that any attribute whose value is an array of attributes is
identifiable by virtue of the attribute type having the CKF ARRAY ATTRIBUTE bit
set.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE,
CKR _ATTRIBUTE TYPE INVALID, and CKR BUFFER TOO SMALL do not
denote true errors for C_GetAttributeValue. If a call to C_GetAttributeValue returns
any of these three values, then the call must nonetheless have processed every attribute in
the template supplied to C_GetAttributeValue. Each attribute in the template whose
value can be returned by the call to C_GetAttributeValue will be returned by the call to
C_GetAttributeValue.

Return values: CKR_ARGUMENTS BAD, CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE TYPE INVALID, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,

CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OBJECT HANDLE INVALID, CKR OK, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect;

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS

CK_BYTE_PTR pMdul us, pExponent;
CK_ATTRI BUTE tenpl ate[] = {
{CKA_MODULUS, NULL_PTR, 0},

{ CKA_PUBLI C_EXPONENT, NULL_PTR, 0}

}1
CK_ RV rv;

135

.rv = C CetAttributeVal ue( hSessi on, hCbject, &tenplate,

2);
if (rv == CKR_OK)
pModul us = (CK_BYTE_PTR)
mal | oc(tenpl at e[ 0] . ul Val ueLen);
tenpl at e[ 0] . pVal ue = pModul us;
[* tenpl ate[0].ul Val ueLen was set by
C GetAttributeval ue */

pExponent = (CK BYTE_PTR)
mal | oc(tenpl at e[ 1] . ul Val ueLen);
tenpl ate[ 1] . pVal ue = pExponent;
/* tenplate[1].ul Val ueLen was set by
C GetAttributeval ue */

rv = C GetAttributeVval ue(hSession, hQoject,
2);
if (rv == CKR_XK) {

}
free( pModul us) ;
free(pExponent);

}

¢ C_SetAttributeValue

&t enpl at e,

CK_DEFI NE_FUNCTI ON(CK_RV, C _Set Attri but eVal ue) (
CK_SESSI ON_ HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

) |

C_SetAttributeValue modifies the value of one or more attributes of an object.
hSession is the session’s handle; hObject is the object’s handle; pTemplate points to a
template that specifies which attribute values are to be modified and their new values;

ulCount is the number of attributes in the template.

Only session objects can be modified during a read-only session.

June 2004 Copyright © 2004 RSA Security Inc.




136 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The template may specify new values for any attributes of the object that can be
modified. If the template specifies a value of an attribute which is incompatible with
other existing attributes of the object, the call fails with the return code
CKR _TEMPLATE INCONSISTENT.

Not all attributes can be modified; see Section 9.7 for more details.

Return values: CKR_ ARGUMENTS BAD, CKR_ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI NOT _INITIALIZED, CKR_DEVICE ERROR,

CKR_DEVICE MEMORY, CKR DEVICE REMOVED, CKR_FUNCTION FAILED,
CKR_GENERAL ERROR, CKR HOST MEMORY,

CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION HANDLE INVALID, CKR_SESSION READ ONLY,
CKR_TEMPLATE INCONSISTENT, CKR_ TOKEN WRITE PROTECTED,
CKR_USER NOT LOGGED _IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect;
CK_UTF8CHAR | abel [] = {“New | abel "};
CK_ATTRI BUTE tenplate[] = {

CKA LABEL, | abel, sizeof(label)-1

s
CK RV rv;

'rv = C SetAttributeVal ue( hSession, hQbject, &tenplate,
1);
if (rv == CKR_XK) {

}

¢ C_FindObjectsInit

CK_DEFI NE_FUNCTI ON(CK_RV, C FindObjectslnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)|

C_FindObjectsInit initializes a search for token and session objects that match a
template. hSession is the session’s handle; pTemplate points to a search template that
specifies the attribute values to match; u/Count is the number of attributes in the search
template. The matching criterion is an exact byte-for-byte match with all attributes in the
template. To find all objects, set ulCount to 0.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 137

After calling C_FindObjectsInit, the application may call C_FindObjects one or more
times to obtain handles for objects matching the template, and then eventually call
C_FindObjectsFinal to finish the active search operation. At most one search operation
may be active at a given time in a given session.

The object search operation will only find objects that the session can view. For
example, an object search in an “R/W Public Session” will not find any private objects
(even if one of the attributes in the search template specifies that the search is for private
objects).

If a search operation is active, and objects are created or destroyed which fit the search
template for the active search operation, then those objects may or may not be found by
the search operation. Note that this means that, under these circumstances, the search
operation may return invalid object handles.

Even though C_FindObjectsInit can return the values
CKR ATTRIBUTE TYPE INVALID and CKR ATTRIBUTE VALUE INVALID, it
is not required to. For example, if it is given a search template with nonexistent attributes
in it, it can return CKR_ATTRIBUTE TYPE INVALID, or it can initialize a search
operation which will match no objects and return CKR_OK.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE VALUE_INVALID, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE _ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION FAILED, CKR GENERAL ERROR, CKR HOST MEMORY,
CKR_OK, CKR_OPERATION_ ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE _INVALID.

Example: see C_FindObjectsFinal.

¢ C_FindObjects

CK_DEFI NE_FUNCTI ON( CK_RV, C_Fi ndObj ect s) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE_PTR phObj ect ,

CK_ULONG ul MaxObj ect Count ,
CK_ULONG_PTR pul Obj ect Count

)|

C_FindObjects continues a search for token and session objects that match a template,
obtaining additional object handles. ASession is the session’s handle; phObject points to
the location that receives the list (array) of additional object handles; u/MaxObjectCount
is the maximum number of object handles to be returned; pul/ObjectCount points to the
location that receives the actual number of object handles returned.

If there are no more objects matching the template, then the location that pulObjectCount
points to receives the value 0.

June 2004 Copyright © 2004 RSA Security Inc.




138 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The search must have been initialized with C_FindObjectsInit.

Return values: CKR_ARGUMENTS BAD, CKR CRYPTOKI NOT INITIALIZED,
CKR_DEVICE ERROR, CKR DEVICE MEMORY, CKR _DEVICE REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID.

Example: see C_FindObjectsFinal.

¢ C_FindObjectsFinal

CK_DEFI NE_FUNCTI ON( CK_RV, C_Fi ndQbj ect sFi nal) (
CK_SESSI ON_HANDLE hSessi on
)

C_FindObjectsFinal terminates a search for token and session objects. ASession is the
session’s handle.

Return values: CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hQbj ect;
CK_ULONG ul Qoj ect Count ;

CK RV rv;

rv = C_FindQojectslnit(hSession, NULL_PTR 0);
assert(rv == CKR_X);
while (1) {
rv = C_FindQoj ect s(hSessi on, & bject, 1,
&ul Obj ect Count ) ;
if (rv 1= CKR. K || ul QojectCount == 0)
br eak;

}

rv = C_FindQbj ect sFi nal (hSessi on) ;
assert(rv == CKR_(X);

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 139

11.8 Encryption functions

Cryptoki provides the following functions for encrypting data:

¢ C_Encryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Encryptlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)|

C_Encryptlnit initializes an encryption operation. hSession is the session’s handle;
pMechanism points to the encryption mechanism; 4Key is the handle of the encryption
key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key
supports encryption, must be CK_TRUE.

After calling C_Encryptlnit, the application can either call C_Encrypt to encrypt data
in a single part; or call C_EncryptUpdate zero or more times, followed by
C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is active
until the application uses a call to C_Encrypt or C_EncryptFinal to actually obtain the
final piece of ciphertext. To process additional data (in single or multiple parts), the
application must call C_Encryptlnit again.

Return values: CKR_CRYPTOKI _NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,

CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY,

CKR_KEY FUNCTION NOT PERMITTED, CKR_KEY HANDLE _INVALID,
CKR_KEY SIZE RANGE, CKR_KEY TYPE INCONSISTENT,
CKR_MECHANISM INVALID, CKR MECHANISM PARAM INVALID, CKR OK,
CKR_OPERATION ACTIVE, CKR PIN EXPIRED, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT LOGGED _IN.

Example: see C_EncryptFinal.

June 2004 Copyright © 2004 RSA Security Inc.




140 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_Encrypt

CK_DEFI NE_FUNCTI ON( CK_RV, C_Encrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG_PTR pul Encrypt edDat aLen

) |

C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to
the data; u/Datalen is the length in bytes of the data; pEncryptedData points to the
location that receives the encrypted data; pulEncryptedDatalen points to the location that
holds the length in bytes of the encrypted data.

C_Encrypt uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_Encryptlnit. A call to
C_Encrypt always terminates the active encryption operation unless it returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR OK)
to determine the length of the buffer needed to hold the ciphertext.

C_Encrypt can not be used to terminate a multi-part operation, and must be called after
C_Encryptlnit without intervening C_EncryptUpdate calls.

For some encryption mechanisms, the input plaintext data has certain length constraints
(either because the mechanism can only encrypt relatively short pieces of plaintext, or
because the mechanism’s input data must consist of an integral number of blocks). If
these constraints are not satisfied, then C_Encrypt will fail with return code
CKR DATA LEN RANGE.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pData and
pEncryptedData point to the same location.

For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate
operations followed by C_EncryptFinal.

Return values: CKR_ ARGUMENTS BAD, CKR_BUFFER TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR DATA INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE MEMORY,
CKR_DEVICE REMOVED, CKR_FUNCTION _CANCELED,

CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal for an example of similar functions.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 141

¢ C _EncryptUpdate

CK_DEFI NE_FUNCTI ON( CK_RV, C _Encr ypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

) |

C_EncryptUpdate continues a multiple-part encryption operation, processing another
data part. hSession is the session’s handle; pPart points to the data part; ul/PartLen is the
length of the data part; pEncryptedPart points to the location that receives the encrypted
data part; pulEncryptedPartLen points to the location that holds the length in bytes of the
encrypted data part.

C_EncryptUpdate uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_Encryptlnit. This function
may be called any number of times in succession. A call to C_EncryptUpdate which
results in an error other than CKR BUFFER TOO SMALL terminates the current
encryption operation.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPart and
pEncryptedPart point to the same location.

Return values: CKR_ ARGUMENTS BAD, CKR_ BUFFER TOO SMALL,
CKR_CRYPTOKI NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID.

Example: see C_EncryptFinal.

¢ C_EncryptFinal

CK_DEFI NE_FUNCTI ON( CK_RV, C _Encrypt Fi nal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Encrypt edPart,
CK_ULONG_PTR pul Last Encrypt edPartLen

)

C_EncryptFinal finishes a multiple-part encryption operation. ASession is the session’s
handle; pLastEncryptedPart points to the location that receives the last encrypted data
part, if any; pulLastEncryptedPartLen points to the location that holds the length of the
last encrypted data part.

June 2004 Copyright © 2004 RSA Security Inc.




142 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_EncryptFinal uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_Encryptlnit. A call to
C_EncryptFinal always terminates the active encryption operation unless it returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR OK)
to determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length
constraints, because the mechanism’s input data must consist of an integral number of
blocks. If these constraints are not satisfied, then C_EncryptFinal will fail with return
code CKR_DATA LEN RANGE.

Return values: CKR_ ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID.

Example:

#def i ne PLAI NTEXT_BUF_SZ 200
#def i ne Cl PHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPi ecelLen;
CK_SESSI ON_ HANDLE hSessi on
CK_OBJECT_HANDLE hKey;
CK_BYTE i v][8];
CK_MECHANI SM nmechani sm = {

CKM DES CBC PAD, iv, sizeof(iv)

};

CK_BYTE dat a[ PLAI NTEXT_BUF_SZ] ;

CK_BYTE encr ypt edDat a] Cl PHERTEXT _BUF_SZ] ;
CK_ULONG ul Encrypt edDat allLen;

CK_ULONG ul Encr ypt edDat a2Len;

CK_ULONG ul Encr ypt edDat a3Len;

CK RV rv;

firstPi eceLen = 90;
secondPi eceLen = PLAI NTEXT_BUF_SZ-firstPi eceLen;
rv = C_Encryptlnit(hSession, &rechanism hKey);
if (rv == CKR_XK) {

/* Encrypt first piece */

ul Encrypt edDat alLen = si zeof (encrypt edDat a) ;

rv = C_Encrypt Updat e(

hSessi on,

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 143

&data[ 0], firstPiecelLen
&encrypt edDat a[ 0], &ul Encrypt edDat allLen);
if (rv 1= CKR.K) {

}

/* Encrypt second piece */
ul Encrypt edDat a2Len = si zeof (encrypt edDat a) -
ul Encrypt edDat allLen;
rv = C_Encrypt Updat e(
hSessi on,
&dat a[ firstPieceLen], secondPi ecelLen,
&encrypt edDat a[ ul Encrypt edDat allLen],
&ul Encr ypt edDat a2Len) ;
if (rv 1= CKR.K) {

}

/[* Get last little encrypted bit */
ul Encrypt edDat a3Len =
si zeof (encrypt edDat a) - ul Encr ypt edDat allLen-
ul Encrypt edDat a2Len;
rv = C_EncryptFinal (
hSessi on,

&encrypt edDat a[ ul Encr ypt edDat alLen+ul Encr ypt edDat
a2lLen],

&ul Encr ypt edDat a3Len) ;
if (rv = CKR.K) {

}

June 2004 Copyright © 2004 RSA Security Inc.



144 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

11.9 Decryption functions

Cryptoki provides the following functions for decrypting data:

¢ C_Decryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Decryptlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)|

C_Decryptlnit initializes a decryption operation. hSession is the session’s handle;
pMechanism points to the decryption mechanism; 4Key is the handle of the decryption
key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key
supports decryption, must be CK_TRUE.

After calling C_Decryptlnit, the application can either call C_Decrypt to decrypt data
in a single part; or call C_DecryptUpdate zero or more times, followed by
C_DecryptFinal, to decrypt data in multiple parts. The decryption operation is active
until the application uses a call to C_Decrypt or C_DecryptFinal to actually obtain the
final piece of plaintext. To process additional data (in single or multiple parts), the
application must call C_DecryptInit again

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY,

CKR_KEY FUNCTION NOT PERMITTED, CKR_KEY HANDLE INVALID,
CKR_KEY SIZE RANGE, CKR_KEY TYPE INCONSISTENT,
CKR_MECHANISM INVALID, CKR MECHANISM PARAM INVALID, CKR OK,
CKR_OPERATION ACTIVE, CKR PIN EXPIRED, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT LOGGED _IN.

Example: see C_DecryptFinal.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 145

¢ C Decrypt

CK_DEFI NE_FUNCTI ON( CK_RV, C Decrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG ul Encrypt edDat aLen,
CK_BYTE_PTR pDat a,

CK_ULONG PTR pul Dat aLen
);

C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle;
pEncryptedData points to the encrypted data; ul/EncryptedDatalen is the length of the
encrypted data; pData points to the location that receives the recovered data; pulDatal.en
points to the location that holds the length of the recovered data.

C_Decrypt uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized with C_Decryptlnit. A call to
C_Decrypt always terminates the active decryption operation unless it returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR OK)
to determine the length of the buffer needed to hold the plaintext.

C_Decrypt can not be used to terminate a multi-part operation, and must be called after
C_Decryptlnit without intervening C_DecryptUpdate calls.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedData
and pData point to the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length,
then either CKR_ENCRYPTED DATA INVALID or
CKR ENCRYPTED DATA LEN RANGE may be returned.

For most mechanisms, C_Decrypt is equivalent to a sequence of C_DecryptUpdate
operations followed by C_DecryptFinal.

Return values: CKR_ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,

CKR _DEVICE MEMORY, CKR _DEVICE REMOVED,

CKR _ENCRYPTED DATA INVALID, CKR ENCRYPTED DATA LEN RANGE,
CKR_FUNCTION CANCELED, CKR _FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK,
CKR_OPERATION NOT _ INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID, CKR USER NOT LOGGED IN.

Example: see C_DecryptFinal for an example of similar functions.

June 2004 Copyright © 2004 RSA Security Inc.




146 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C DecryptUpdate

CK_DEFI NE_FUNCTI ON( CK_RV, C Decr ypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG PTR pul PartLen

) |

C_DecryptUpdate continues a multiple-part decryption operation, processing another
encrypted data part. hSession is the session’s handle; pEncryptedPart points to the
encrypted data part; ulEncryptedPartLen is the length of the encrypted data part; pPart
points to the location that receives the recovered data part; pulPartLen points to the
location that holds the length of the recovered data part.

C_DecryptUpdate uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized with C_DecryptlInit. This function
may be called any number of times in succession. A call to C_DecryptUpdate which
results in an error other than CKR BUFFER TOO SMALL terminates the current
decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and
pPart point to the same location.

Return values: CKR_ ARGUMENTS BAD, CKR_ BUFFER TOO SMALL,
CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,

CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_ENCRYPTED DATA INVALID, CKR ENCRYPTED DATA LEN RANGE,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR USER NOT LOGGED IN.

Example: See C_DecryptFinal.

¢ C _DecryptFinal

CK_DEFI NE_FUNCTI ON( CK_RV, C DecryptFinal) (
CK_SESSI ON_HANDLE hSessi on,
CK _BYTE_PTR plLast Part,
CK_ULONG _PTR pul Last PartLen

) |

C_DecryptFinal finishes a multiple-part decryption operation. ASession is the session’s
handle; pLastPart points to the location that receives the last recovered data part, if any;
pulLastPartLen points to the location that holds the length of the last recovered data part.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 147

C_DecryptFinal uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized with C_Decryptlnit. A call to
C_DecryptFinal always terminates the active decryption operation unless it returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR OK)
to determine the length of the buffer needed to hold the plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length,
then either CKR_ENCRYPTED DATA INVALID or
CKR_ENCRYPTED DATA LEN RANGE may be returned.

Return values: CKR_ ARGUMENTS BAD, CKR_ BUFFER TOO SMALL,
CKR_CRYPTOKI NOT_INITIALIZED, CKR_DEVICE_ERROR,

CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_ENCRYPTED DATA INVALID, CKR ENCRYPTED DATA LEN RANGE,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,

CKR_OPERATION _NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR USER NOT LOGGED IN.

Example:

#defi ne Cl PHERTEXT_BUF_SZ 256
#defi ne PLAI NTEXT_BUF_SZ 256

CK_ULONG firstEncrypt edPi eceLen, secondEncrypt edPi ecelLen;
CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_BYTE i v][8];
CK_MECHANI SM nmechani sm = {
CKM DES CBC PAD, iv, sizeof(iv)

1

CK_BYTE dat a[ PLAI NTEXT_BUF_SZ] ;

CK_BYTE encr ypt edDat a] Cl PHERTEXT BUF_SZ] ;
CK_ULONG ul Dat alLen, ul Data2Len, ul Data3Len;
CK RV ryv;

firstEncryptedPi eceLen = 90;
secondEncr ypt edPi eceLen = Cl PHERTEXT BUF_SZ-
first EncryptedPi ecelLen;
rv = C Decryptlnit(hSession, &rechanism hKey);
if (rv == CKR_.X) {
/* Decrypt first piece */
ul Dat alLen = si zeof (dat a);
rv = C _Decrypt Updat e(
hSessi on,
&encrypt edData[ 0], firstEncryptedPi ecelLen,

June 2004 Copyright © 2004 RSA Security Inc.



148

}

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

&dat a[ 0], &ul Datallen);
if (rv = CKR.K) {

}

/* Decrypt second piece */
ul Dat a2Len = si zeof (dat a) - ul Dat allLen;
rv = C _Decrypt Updat e(
hSessi on,
&encrypt edDat a[ fi rst Encrypt edPi eceLen],
secondEncr ypt edPi ecelLen,
&dat aJ ul Dat alLen], &ul Data2lLen);
if (rv 1= CKR.K) {

}

/* Get last little decrypted bit */
ul Dat a3Len = si zeof (dat a) - ul Dat alLen- ul Dat a2Len;
rv = C_DecryptFinal (
hSessi on,
&dat a[ ul Dat alLen+ul Dat a2Len], &ul Data3Len);
if (rv 1= CKR.OK) {

}

11.10 Message digesting functions

Cryptoki provides the following functions for digesting data:

¢ C_Digestlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Digestlnit)(
CK_SESSI ON_ HANDLE hSessi on,

)

CK_MECHANI SM _PTR pMechani sm

C _Digestlnit initializes a message-digesting operation. ASession is the session’s handle;
pMechanism points to the digesting mechanism.

After calling C_Digestlnit, the application can either call C_Digest to digest data in a
single part; or call C_DigestUpdate zero or more times, followed by C_DigestFinal, to
digest data in multiple parts. The message-digesting operation is active until the
application uses a call to C_Digest or C_DigestFinal fo actually obtain the message
digest. To process additional data (in single or multiple parts), the application must call
C _DigestlInit again.

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 149

Return values: CKR_ ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE ERROR, CKR DEVICE MEMORY, CKR DEVICE REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_MECHANISM INVALID,
CKR_MECHANISM PARAM INVALID, CKR _OK, CKR_OPERATION ACTIVE,
CKR_PIN EXPIRED, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT LOGGED IN.

Example: see C_DigestFinal.

¢ C_Digest

CK_DEFI NE_FUNCTI ON( CK_RV, C _Di gest) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len
);

C_Digest digests data in a single part. hSession is the session’s handle, pData points to
the data; u/DataLen is the length of the data; pDigest points to the location that receives
the message digest; pulDigestLen points to the location that holds the length of the
message digest.

C_Digest uses the convention described in Section 11.2 on producing output.

The digest operation must have been initialized with C_DigestInit. A call to C_Digest
always  terminates the  active  digest operation wunless it  returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR OK)
to determine the length of the buffer needed to hold the message digest.

C_Digest can not be used to terminate a multi-part operation, and must be called after
C_DigestInit without intervening C_DigestUpdate calls.

The input data and digest output can be in the same place, i.e., it is OK if pData and
pDigest point to the same location.

C_Digest is equivalent to a sequence of C_DigestUpdate operations followed by
C_DigestFinal.

Return values: CKR_ ARGUMENTS_BAD, CKR_BUFFER _TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE _REMOVED,
CKR_FUNCTION _CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,

June 2004 Copyright © 2004 RSA Security Inc.




150 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID.

Example: see C_DigestFinal for an example of similar functions.

¢ C_DigestUpdate

CK_DEFI NE_FUNCTI ON( CK_RV, C _Di gest Updat e) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen

);

C_DigestUpdate continues a multiple-part message-digesting operation, processing
another data part. ASession is the session’s handle, pPart points to the data part;
ulPartLen is the length of the data part.

The message-digesting operation must have been initialized with C_DigestlInit. Calls to
this function and C_DigestKey may be interspersed any number of times in any order. A
call to C_DigestUpdate which results in an error terminates the current digest operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE _ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL _ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION _HANDLE INVALID.

Example: see C_DigestFinal.

¢ C DigestKey

CK_DEFI NE_FUNCTI ON( CK_RV, C _Di gest Key) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hKey

);

C_DigestKey continues a multiple-part message-digesting operation by digesting the
value of a secret key. ASession is the session’s handle; #Key is the handle of the secret
key to be digested.

The message-digesting operation must have been initialized with C_DigestInit. Calls to
this function and C_DigestUpdate may be interspersed any number of times in any
order.

If the value of the supplied key cannot be digested purely for some reason related to its
length, C_DigestKey should return the error code CKR_KEY SIZE RANGE.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 151

Return values: CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR _DEVICE REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY,

CKR KEY HANDLE INVALID, CKR KEY INDIGESTIBLE,

CKR KEY SIZE RANGE, CKR OK, CKR OPERATION NOT INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

¢ C_DigestFinal

CK_DEFI NE_FUNCTI ON( CK_RV, C _Di gest Fi nal) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len

);

C _DigestFinal finishes a multiple-part message-digesting operation, returning the
message digest. ASession is the session’s handle; pDigest points to the location that
receives the message digest; pulDigestLen points to the location that holds the length of
the message digest.

C_DigestFinal uses the convention described in Section 11.2 on producing output.

The digest operation must have been initialized with C_Digestlnit. A call to
C_DigestFinal always terminates the active digest operation unless it returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the message digest.

Return values: CKR_ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR _DEVICE REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_ FAILED,
CKR_GENERAL ERROR, CKR_ HOST MEMORY, CKR OK,
CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_MECHANI SM nechani sm = {
CKM MD5, NULL_PTR, 0

CK BYTE data[] ={...};
CK_BYTE di gest|[ 16];
CK_ULONG ul Di gest Len;
CK_RV rv;

June 2004 Copyright © 2004 RSA Security Inc.




152 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

'rv = C Digestlnit(hSession, &rechanisn);
if (rv 1= CKR.OK) {

}

rv = C_DigestUpdat e(hSession, data, sizeof(data));
if (rv 1= CKR.K) {

}

rv = C _DigestKey(hSession, hKey);
if (rv 1= CKR.OK) {

}

ul Di gest Len = si zeof (di gest);
rv = C DigestFinal (hSession, digest, &ulD gestlLen);

11.11 Signing and MACing functions

Cryptoki provides the following functions for signing data (for the purposes of Cryptoki,
these operations also encompass message authentication codes):

¢ C_Signlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Signlnit)(
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)|

C_Signlnit initializes a signature operation, where the signature is an appendix to the
data. hSession is the session’s handle; pMechanism points to the signature mechanism;
hKey is the handle of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports
signatures with appendix, must be CK_TRUE.

After calling C_Signlnit, the application can either call C_Sign to sign in a single part;
or call C_SignUpdate one or more times, followed by C_SignFinal, to sign data in
multiple parts. The signature operation is active until the application uses a call to

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 153

C_Sign or C_SignFinal to actually obtain the signature. To process additional data (in
single or multiple parts), the application must call C_SignInit again.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR DEVICE ERROR, CKR DEVICE MEMORY, CKR DEVICE REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY,

CKR_KEY FUNCTION NOT PERMITTED,CKR KEY HANDLE INVALID,

CKR KEY SIZE RANGE, CKR KEY TYPE INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM INVALID, CKR OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION CLOSED,
CKR_SESSION _HANDLE INVALID, CKR USER NOT LOGGED IN.

Example: see C_SignFinal.

¢ C Sign

CK_DEFI NE_FUNCTI ON(CK_RV, C_Sign) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG_PTR pul Si gnat ureLen

)|

C _Sign signs data in a single part, where the signature is an appendix to the data.
hSession is the session’s handle; pData points to the data; ulDatalen is the length of the
data; pSignature points to the location that receives the signature; pulSignatureLen points
to the location that holds the length of the signature.

C_Sign uses the convention described in Section 11.2 on producing output.

The signing operation must have been initialized with C_SignInit. A call to C_Sign
always  terminates the  active  signing  operation unless it  returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR OK)
to determine the length of the buffer needed to hold the signature.

C_Sign can not be used to terminate a multi-part operation, and must be called after
C_Signlnit without intervening C_SignUpdate calls.

For most mechanisms, C_Sign is equivalent to a sequence of C_SignUpdate operations
followed by C_SignFinal.

Return values: CKR_ ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR DATA INVALID,
CKR_DATA LEN RANGE, CKR DEVICE ERROR, CKR DEVICE MEMORY,
CKR_DEVICE REMOVED, CKR_FUNCTION CANCELED,

June 2004 Copyright © 2004 RSA Security Inc.




154 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID, CKR_USER NOT LOGGED IN,
CKR_FUNCTION REJECTED.

Example: see C_SignFinal for an example of similar functions.

¢ C SignUpdate

CK_DEFI NE_FUNCTI ON( CK_RV, C_Si gnUpdat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,

CK_ULONG ul PartLen

)

C _SignUpdate continues a multiple-part signature operation, processing another data
part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the
length of the data part.

The signature operation must have been initialized with C_SignlInit. This function may
be called any number of times in succession. A call to C_SignUpdate which results in
an error terminates the current signature operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DATA LEN_RANGE, CKR DEVICE ERROR, CKR_DEVICE MEMORY,
CKR_DEVICE REMOVED, CKR_FUNCTION CANCELED,

CKR_FUNCTION FAILED, CKR_ GENERAL ERROR, CKR HOST MEMORY,
CKR_OK, CKR_OPERATION NOT_INITIALIZED, CKR_SESSION CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_USER_NOT LOGGED IN.

Example: see C_SignFinal.

¢ C_SignFinal

CK_DEFI NE_FUNCTI ON( CK_RV, C_Si gnFi nal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,

CK_ULONG_PTR pul Si gnat ureLen

)

C SignFinal finishes a multiple-part signature operation, returning the signature.
hSession 1is the session’s handle; pSignature points to the location that receives the
signature; pulSignatureLen points to the location that holds the length of the signature.

C_SignFinal uses the convention described in Section 11.2 on producing output.
The signing operation must have been initialized with C_Signlnit. A call to

C_SignFinal always terminates the active signing operation unless it returns

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 155

CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR OK)
to determine the length of the buffer needed to hold the signature.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO SMALL,
CKR_CRYPTOKI NOT _INITIALIZED, CKR_DATA LEN RANGE,
CKR_DEVICE _ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR USER NOT LOGGED IN,
CKR_FUNCTION REJECTED.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nechani sm = {
CKM DES MAC, NULL_PTR, O

CK BYTE data[] ={...};
CK_BYTE nac| 4] ;
CK_ULONG ul MacLen;

CK_ RV ryv;

.rv = C Signlnit(hSession, &rechanism hKey);
if (rv == CKR_XK) {
rv = C_SignUpdat e(hSession, data, sizeof(data));

iJI MacLen = si zeof (mac);
rv = C_SignFinal (hSession, nmac, &ul MaclLen);

}

¢ C SignRecoverlnit

CK_DEFI NE_FUNCTI ON( CK_RV, C_Si gnRecoverlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

) |

C_SignRecoverlnit initializes a signature operation, where the data can be recovered
from the signature. ASession is the session’s handle; pMechanism points to the structure
that specifies the signature mechanism; #Key is the handle of the signature key.

June 2004 Copyright © 2004 RSA Security Inc.




156 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the
key supports signatures where the data can be recovered from the signature, must be
CK_TRUE.

After calling C_SignRecoverlnit, the application may call C_SignRecover to sign in a
single part. The signature operation is active until the application uses a call to
C _SignRecover to actually obtain the signature. To process additional data in a single
part, the application must call C_SignRecoverlnit again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE _ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY,

CKR_KEY FUNCTION NOT PERMITTED, CKR_ KEY HANDLE INVALID,
CKR _KEY SIZE RANGE, CKR KEY TYPE INCONSISTENT,
CKR_MECHANISM INVALID, CKR MECHANISM PARAM INVALID, CKR OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_USER_NOT LOGGED IN.

Example: see C_SignRecover.

¢ C_SignRecover

CK_DEFI NE_FUNCTI ON( CK_RV, C_Si gnRecover) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pbDat a,
CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG_PTR pul Si gnat ureLen

);

C_SignRecover signs data in a single operation, where the data can be recovered from
the signature. hSession is the session’s handle; pData points to the data; ulDataLen is the
length of the data; pSignature points to the location that receives the signature;
pulSignatureLen points to the location that holds the length of the signature.

C_SignRecover uses the convention described in Section 11.2 on producing output.

The signing operation must have been initialized with C_SignRecoverInit. A call to
C_SignRecover always terminates the active signing operation unless it returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR OK)
to determine the length of the buffer needed to hold the signature.

Return values: CKR_ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR_DATA INVALID,

CKR _DATA LEN RANGE, CKR DEVICE ERROR, CKR DEVICE MEMORY,
CKR _DEVICE REMOVED, CKR FUNCTION CANCELED,

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 157

CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION _HANDLE INVALID, CKR_USER NOT LOGGED IN.

Example:

CK_SESSI ON_HANDLE hSessi on

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM RSA 9796, NULL_PTR, O

};

CK BYTE data[] ={...};
CK_BYTE si gnature[ 128];
CK_ULONG ul Si gnat ur eLen
CK_RV rv;

rv = C_SignRecoverlnit(hSession, &rechanism hKey);
if (rv == CKR_X) {
ul Si gnat ureLen = si zeof (si ghature);
rv = C_SignRecover (
hSessi on, data, sizeof(data), signature,
&ul Si gnat ur eLen) ;
if (rv == CKR_XK) {

}
}

11.12 Functions for verifying signatures and MACs

Cryptoki provides the following functions for verifying signatures on data (for the
purposes of Cryptoki, these operations also encompass message authentication codes):

¢ C Verifylnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Verifylnit)(
CK_SESSI ON_HANDLE hSessi on
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

) |

C_Verifylnit initializes a verification operation, where the signature is an appendix to
the data. hSession is the session’s handle; pMechanism points to the structure that
specifies the verification mechanism; #Key is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key
supports verification where the signature is an appendix to the data, must be CK_TRUE.

June 2004 Copyright © 2004 RSA Security Inc.




158 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

After calling C_Verifylnit, the application can either call C_Verify to verify a signature
on data in a single part; or call C_VerifyUpdate one or more times, followed by
C_VerifyFinal, to verify a signature on data in multiple parts. The verification operation
is active until the application calls C_Verify or C_VerifyFinal. To process additional
data (in single or multiple parts), the application must call C_VerifylInit again.

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR DEVICE ERROR, CKR DEVICE MEMORY, CKR DEVICE REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY,

CKR_KEY FUNCTION NOT PERMITTED, CKR KEY HANDLE INVALID,

CKR KEY SIZE RANGE, CKR KEY TYPE INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM INVALID, CKR OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION CLOSED,
CKR_SESSION_HANDLE INVALID, CKR USER NOT LOGGED IN.

Example: see C_VerifyFinal.

¢ C Verify

CK_DEFI NE_FUNCTI ON(CK_RV, C Verify)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat urelLen
)

C_Verify verifies a signature in a single-part operation, where the signature is an
appendix to the data. ASession is the session’s handle; pData points to the data;
ulDataLen is the length of the data; pSignature points to the signature; ulSignatureLen is
the length of the signature.

The verification operation must have been initialized with C_Verifylnit. A call to
C_Verify always terminates the active verification operation.

A successful call to C_Verify should return either the value CKR OK (indicating that
the supplied signature is valid) or CKR_SIGNATURE INVALID (indicating that the
supplied signature is invalid). If the signature can be seen to be invalid purely on the
basis of its length, then CKR_SIGNATURE LEN RANGE should be returned. In any
of these cases, the active signing operation is terminated.

C_Verify can not be used to terminate a multi-part operation, and must be called after
C_VerifylInit without intervening C_VerifyUpdate calls.

For most mechanisms, C_Verify is equivalent to a sequence of C_VerifyUpdate
operations followed by C_VerifyFinal.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 159

Return values: CKR_ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR DATA INVALID, CKR DATA LEN RANGE, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE_REMOVED,

CKR_FUNCTION _CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example: see C_VerifyFinal for an example of similar functions.

¢ C VerifyUpdate

CK_DEFI NE_FUNCTI ON( CK_RV, C VerifyUpdate) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen

)

C VerifyUpdate continues a multiple-part verification operation, processing another
data part. hSession is the session’s handle, pPart points to the data part; u/PartLen is the
length of the data part.

The verification operation must have been initialized with C_VerifyInit. This function
may be called any number of times in succession. A call to C_VerifyUpdate which
results in an error terminates the current verification operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DATA LEN RANGE, CKR DEVICE ERROR, CKR_DEVICE MEMORY,
CKR_DEVICE REMOVED, CKR_FUNCTION CANCELED,

CKR_FUNCTION FAILED, CKR_ GENERAL ERROR, CKR HOST MEMORY,
CKR_OK, CKR_OPERATION NOT_INITIALIZED, CKR_SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_VerifyFinal.

¢ C_VerifyFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen

)

C VerifyFinal finishes a multiple-part verification operation, checking the signature.
hSession is the session’s handle; pSignature points to the signature; ulSignatureLen is the
length of the signature.

June 2004 Copyright © 2004 RSA Security Inc.




160 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The verification operation must have been initialized with C_Verifylnit.

C_VerifyFinal always terminates the active verification operation.

A call to

A successful call to C_VerifyFinal should return either the value CKR_OK (indicating
that the supplied signature is valid) or CKR SIGNATURE INVALID (indicating that
the supplied signature is invalid). If the signature can be seen to be invalid purely on the
basis of its length, then CKR_SIGNATURE LEN RANGE should be returned. In any

of these cases, the active verifying operation is terminated.

Return values: CKR_ARGUMENTS BAD, CKR CRYPTOKI NOT INITIALIZED,
CKR_DATA LEN RANGE, CKR DEVICE ERROR, CKR DEVICE MEMORY,

CKR_DEVICE _REMOVED, CKR_FUNCTION CANCELED,

CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_ HOST MEMORY,
CKR_OK, CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,

CKR_SESSION_HANDLE_INK/ALID, CKR_SIGNATURE INVALID,
CKR_SIGNATURE LEN RANGE.

Example:

CK_SESSI ON_HANDLE hSessi on

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM DES MAC, NULL_PTR, O

CK_BYTE data[] = {...}:
CK_BYTE nmc| 4] ;
CK_ RV rv;

rv = C Verifylnit(hSession, &rechanism hKey);
if (rv == CKR_.OX) {

rv = C VerifyUpdate(hSession, data, sizeof(data));

}v = C VerifyFinal (hSession, mac, sizeof(mac));

Copyright © 2004 RSA Security Inc.

June 2004



11. FUNCTIONS 161

¢ C VerifyRecoverlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecoverlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_VerifyRecoverlnit initializes a signature verification operation, where the data is
recovered from the signature. hSession is the session’s handle; pMechanism points to the
structure that specifies the verification mechanism; #Key is the handle of the verification
key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates
whether the key supports verification where the data is recovered from the signature,
must be CK_TRUE.

After calling C_VerifyRecoverlnit, the application may call C_VerifyRecover to verify
a signature on data in a single part. The verification operation is active until the
application uses a call to C_VerifyRecover to actually obtain the recovered message.

Return values: CKR_ ARGUMENTS BAD, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE MEMORY, CKR DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY,

CKR_KEY FUNCTION NOT PERMITTED, CKR KEY HANDLE INVALID,
CKR_KEY SIZE RANGE, CKR KEY TYPE INCONSISTENT,
CKR_MECHANISM INVALID, CKR_MECHANISM_PARAM INVALID, CKR OK,
CKR_OPERATION ACTIVE, CKR PIN EXPIRED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID, CKR USER NOT LOGGED IN.

Example: see C_VerifyRecover.

¢ C_VerifyRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecover) (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen,
CK_BYTE_PTR pbDat a,
CK_ULONG_PTR pul Dat aLen
);

C _VerifyRecover verifies a signature in a single-part operation, where the data is
recovered from the signature. ASession is the session’s handle; pSignature points to the
signature; ulSignatureLen is the length of the signature; pData points to the location that
receives the recovered data; and pulDataLen points to the location that holds the length
of the recovered data.

June 2004 Copyright © 2004 RSA Security Inc.




162 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

C_VerifyRecover uses the convention described in Section 11.2 on producing output.

The verification operation must have been initialized with C_VerifyRecoverlInit. A call
to C_VerifyRecover always terminates the active verification operation unless it returns
CKR BUFFER TOO SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the recovered data.

A successful call to C_VerifyRecover should return either the value CKR OK
(indicating that the supplied signature is valid) or CKR SIGNATURE INVALID
(indicating that the supplied signature is invalid). If the signature can be seen to be
invalid purely on the basis of its length, then CKR_SIGNATURE LEN RANGE should
be  returned. The return codes CKR SIGNATURE INVALID  and
CKR SIGNATURE LEN RANGE have a higher priority than the return code
CKR BUFFER TOO SMALL, i.e., if C_VerifyRecover is supplied with an invalid
signature, it will never return CKR_ BUFFER TOO SMALL.

Return values: CKR_ ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR DATA INVALID,
CKR_DATA LEN RANGE, CKR DEVICE ERROR, CKR DEVICE MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION CANCELED,

CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION NOT INITIALIZED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID, CKR_SIGNATURE LEN RANGE,
CKR_SIGNATURE_INVALID.

Example:

CK_SESSI ON_ HANDLE hSessi on

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM nmechani sm = {
CKM_RSA 9796, NULL_PTR, O

CK BYTE data[] = {...};
CK_ULONG ul Dat aLen;
CK_BYTE si gnature[ 128];
CK RV ryv;

rv = C VerifyRecoverlnit(hSession, &rechanism hKey);
if (rv == CKR_.OX) {
ul Dat aLen = si zeof (data);
rv = C VerifyRecover(
hSessi on, signature, sizeof(signature), data,
&ul Dat aLen) ;

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 163

11.13 Dual-function cryptographic functions

Cryptoki provides the following functions to perform two cryptographic operations
“simultaneously” within a session. These functions are provided so as to avoid
unnecessarily passing data back and forth to and from a token.

¢ C DigestEncryptUpdate

CK_DEFI NE_FUNCTI ON( CK_RV, C _Di gest Encrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

)|

C_DigestEncryptUpdate continues multiple-part digest and encryption operations,
processing another data part. ASession is the session’s handle; pPart points to the data
part; ulPartLen is the length of the data part; pEncryptedPart points to the location that
receives the digested and encrypted data part; pulEncryptedPartLen points to the location
that holds the length of the encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 11.2 on producing
output. If a C_DigestEncryptUpdate call does not produce encrypted output (because
an error occurs, or because pEncryptedPart has the value NULL PTR, or because
pulEncryptedPartLen is too small to hold the entire encrypted part output), then no
plaintext is passed to the active digest operation.

Digest and encryption operations must both be active (they must have been initialized
with C_DigestInit and C_Encryptlnit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_DigestUpdate,
C_DigestKey, and C_EncryptUpdate calls (it would be somewhat unusual to
intersperse calls to C_DigestEncryptUpdate with calls to C_DigestKey, however).

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO SMALL,
CKR_CRYPTOKI NOT _INITIALIZED, CKR_DATA LEN RANGE,
CKR_DEVICE _ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION HANDLE INVALID.

Example:
#define BUF_SZ 512
CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;

June 2004 Copyright © 2004 RSA Security Inc.




164 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_BYTE i v][8];

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

};

CK_MECHANI SM encrypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

1

CK_BYTE encr ypt edDat a[ BUF_SZ] ;

CK_ULONG ul Encr ypt edDat aLen;

CK_BYTE di gest|[ 16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[ ( 2* BUF_SZ) +8] ;

CK_RV rv;

int i;

menset (iv, 0, sizeof(iv));

menset (data, ‘A, ((2*BUF_SZ)+5));

rv = C_Encryptlnit(hSession, &encryptionMechani sm hKey);
if (rv 1= CKR.OXK) {

}
rv = C Digestlnit(hSession, &digestMchanisn;
if (rv 1= CKR.K) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Di gest Encrypt Updat e(

hSessi on,

&dat a[ 0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Digest Encrypt Updat e(

hSessi on,

&dat a[ BUF_SZ], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

/*

* The |l ast portion of the buffer needs to be handl ed
with

* separate calls to deal wth padding i ssues in ECB node

*/

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 165

/* First, conplete the digest on the buffer */
rv = C_DigestUpdat e(hSessi on, &data[ BUF_SzZ*2], 5);

QID gestLen = si zeof (di gest);
rv = C DigestFinal (hSession, digest, &ulD gestlLen);

/* Then, pad |last part with 3 0Ox00 bytes, and conplete
encryption */
for(i=0;i<3;i++)
dat a] (( BUF_Sz*2) +5) +i] = 0xO00;

/* Now, get second-to-l|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[ BUF_Sz*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen);

/[* CGet |ast piece of ciphertext (should have |ength O,
here) */

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C_Encrypt Fi nal (hSessi on, encrypt edDat a,
&ul Encr ypt edDat aLen) ;

¢ C DecryptDigestUpdate

CK_DEFI NE_FUNCTI ON( CK_RV, C Decrypt D gest Updat e) (
CK_SESSI ON_HANDLE hSessi on

CK_BYTE_PTR pEncrypt edPart,

CK_ULONG ul Encrypt edPart Len,

CK_BYTE_PTR pPart,

CK_ULONG_PTR pul Part Len

)|

C_DecryptDigestUpdate continues a multiple-part combined decryption and digest
operation, processing another data part. iSession is the session’s handle; pEncryptedPart
points to the encrypted data part; u/EncryptedPartLen is the length of the encrypted data
part; pPart points to the location that receives the recovered data part; pulPartLen points
to the location that holds the length of the recovered data part.

C_DecryptDigestUpdate uses the convention described in Section 11.2 on producing
output. If a C_DecryptDigestUpdate call does not produce decrypted output (because an

June 2004 Copyright © 2004 RSA Security Inc.




166 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

error occurs, or because pPart has the value NULL PTR, or because pulPartLen is too
small to hold the entire decrypted part output), then no plaintext is passed to the active
digest operation.

Decryption and digesting operations must both be active (they must have been initialized
with C_Decryptlnit and C_DigestInit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_DecryptUpdate,
C_DigestUpdate, and C_DigestKey calls (it would be somewhat unusual to intersperse
calls to C_DigestEncryptUpdate with calls to C_DigestKey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when
using C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate.
This is because when C_DigestEncryptUpdate is called, precisely the same input is
passed to both the active digesting operation and the active encryption operation;
however, when C_DecryptDigestUpdate is called, the input passed to the active
digesting operation is the output of the active decryption operation. This issue comes up
only when the mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which
will simultaneously decrypt this ciphertext and digest the original plaintext thereby
obtained.

After initializing decryption and digesting operations, the application passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate
returns exactly 16 bytes of plaintext, since at this point, Cryptoki doesn’t know if there’s
more ciphertext coming, or if the last block of ciphertext held any padding. These 16
bytes of plaintext are passed into the active digesting operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of
plaintext. However, since the active decryption and digesting operations are linked only
through the C_DecryptDigestUpdate call, these 2 bytes of plaintext are not passed on to
be digested.

A call to C_DigestFinal, therefore, would compute the message digest of the first 16
bytes of the plaintext, not the message digest of the entire plaintext. It is crucial that,
before C_DigestFinal is called, the last 2 bytes of plaintext get passed into the active
digesting operation via a C_DigestUpdate call.

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptDigestUpdate, it knows exactly how much plaintext has
been passed into the active digesting operation. Extreme caution is warranted when
using a padded decryption mechanism with C_DecryptDigestUpdate.

Return values: CKR_ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 167

CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_ENCRYPTED DATA INVALID, CKR ENCRYPTED DATA LEN RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION NOT INITIALIZED, CKR_SESSION CLOSED,
CKR_SESSION HANDLE INVALID.

Example:

#define BUF_SZ 512

CK_SESSI ON_ HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE i v][8];

CK_MECHANI SM decr ypti onMechani sm = {
CKM _DES_ECB, iv, sizeof(iv)

1

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

1

CK_BYTE encrypt edDat a[ ( 2* BUF_SZ) +8] ;

CK_BYTE di gest|[ 16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a] BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;

CK_ RV rv;

menset (iv, 0, sizeof(iv));

menset (encryptedData, ‘A, ((2*BUF_SZ)+8));

rv = C Decryptlnit(hSession, &decryptionMechani sm hKey);
if (rv 1= CKR.OK) {

}
rv = C Digestlnit(hSession, &digestMchanisn;
if (rv 1= CKR.X){

}

ul Dat aLen = si zeof (data);

rv = C _Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[ 0], BUF_SZ,
data, &ul DatalLen);

June 2004 Copyright © 2004 RSA Security Inc.



168 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ul Dat aLen = si zeof (data);

rv = C _Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[| BUF_SZ], BUF_SZ,
data, &ul Datalen);

/*

* The |l ast portion of the buffer needs to be handl ed
with

* separate calls to deal with padding issues in ECB node

*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (dat a);
rv = C _Decrypt Updat e(

hSessi on,

&encrypt edDat a[ BUF_SZ*2], 8,

data, &ul Last UpdateSi ze);

/* Get last piece of plaintext (should have | ength O,
here) */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C DecryptFi nal (hSessi on, &dat a[ ul Last Updat eSi ze],
&ul Dat aLen) ;

if (rv 1= CKR.OK) {

}

/* Digest last bit of plaintext */
rv = C_Digest Updat e( hSessi on, &data[ BUF_SZ*2], 5);
if (rv 1= CKR.K) {

ul Di gest Len = si zeof (di gest);
rv = C DigestFinal (hSession, digest, &ul D gestlLen);
if (rv 1= CKR.OK) {

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 169

¢ C SignEncryptUpdate

CK_DEFI NE_FUNCTI ON( CK_RV, C_Si gnEncr ypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul PartLen,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

) |

C_SignEncryptUpdate continues a multiple-part combined signature and encryption
operation, processing another data part. hASession is the session’s handle; pPart points to
the data part; ul/PartLen is the length of the data part; pEncryptedPart points to the
location that receives the digested and encrypted data part; and pulEncryptedPart points
to the location that holds the length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 11.2 on producing
output. If a C_SignEncryptUpdate call does not produce encrypted output (because an
error occurs, or because pEncryptedPart has the value NULL PTR, or because
pulEncryptedPartLen is too small to hold the entire encrypted part output), then no
plaintext is passed to the active signing operation.

Signature and encryption operations must both be active (they must have been initialized
with C_Signlnit and C_Encryptlnit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_SignUpdate and
C_EncryptUpdate calls.

Return values: CKR_ ARGUMENTS BAD, CKR BUFFER TOO SMALL,
CKR_CRYPTOKI NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE INVALID, CKR_USER_NOT LOGGED IN.

Example:
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hEncrypti onKey, hMacKey;
CK_BYTE i v][ 8];
CK_MECHANI SM si gnMechani sm = {
CKM DES_MAC, NULL_PTR, O
3
CK_MECHANI SM encrypti onMechani sm = {
CKM_DES _ECB, iv, sizeof(iv)
3
CK_BYTE encr ypt edDat a[ BUF_SZ] ;

June 2004 Copyright © 2004 RSA Security Inc.




170 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_ULONG ul Encrypt edDat aLen;
CK_BYTE MA(C 4] ;

CK_ULONG ul MacLen;

CK_BYTE dat a[ ( 2* BUF_SZ) +8] ;
CK_RV rv;

int i;

menset (iv, 0, sizeof(iv));

menset (data, ‘A, ((2*BUF_SZ)+5));

rv = C_Encryptlnit(hSession, &encryptionMechani sm
hEncrypti onKey) ;

if (rv 1= CKR.K) {

}
rv = C_Signlnit(hSession, &signMechanism hMacKey);
if (rv 1= CKR.K) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Si gnEncrypt Updat e(

hSessi on,

&dat a[ 0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Si gnEncrypt Updat e(

hSessi on,

&dat a[ BUF_SZ], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

/*
* The last portion of the buffer needs to be handl ed
with
* separate calls to deal with padding issues in ECB node
*/

/[* First, conplete the signature on the buffer */
rv = C_SignUpdat e( hSessi on, &data[ BUF_SZ*2], 5);

Qlwthen = si zeof (MAC);
rv = C_SignFinal (hSession, MAC, &ul MacLen);

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 171

/* Then pad | ast part with 3 0x00 bytes, and conplete
encryption */
for(i=0;i<3;i++)
dat a[ (( BUF_Sz*2) +5) +i] = 0x00;

/* Now, get second-to-l|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[ BUF_SZ*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen);

/* Get last piece of ciphertext (should have |ength O,
here) */

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C_EncryptFi nal (hSessi on, encryptedDat a,
&ul Encrypt edDat aLen) ;

¢ C_DecryptVerifyUpdate

CK_DEFI NE_FUNCTI ON( CK_RV, C Decrypt Veri fyUpdate) (
CK_SESSI ON_HANDLE hSessi on

CK_BYTE_PTR pEncrypt edPart,

CK_ULONG ul Encrypt edPart Len,

CK_BYTE_PTR pPart,

CK_ULONG PTR pul PartLen

) |

C_DecryptVerifyUpdate continues a multiple-part combined decryption and
verification operation, processing another data part. ASession is the session’s handle;
pEncryptedPart points to the encrypted data; ulEncryptedPartLen is the length of the
encrypted data; pPart points to the location that receives the recovered data; and
pulPartLen points to the location that holds the length of the recovered data.

C_DecryptVerifyUpdate uses the convention described in Section 11.2 on producing
output. If a C_DecryptVerifyUpdate call does not produce decrypted output (because
an error occurs, or because pPart has the value NULL PTR, or because pulPartLen is
too small to hold the entire encrypted part output), then no plaintext is passed to the
active verification operation.

Decryption and signature operations must both be active (they must have been initialized
with C_Decryptlnit and C_Verifylnit, respectively). This function may be called any

June 2004 Copyright © 2004 RSA Security Inc.




172 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

number of times in succession, and may be interspersed with C_DecryptUpdate and
C_VerifyUpdate calls.

Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when
using C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. This
is because when C_SignEncryptUpdate is called, precisely the same input is passed to
both the active signing operation and the active encryption operation; however, when
C_DecryptVerifyUpdate is called, the input passed to the active verifying operation is
the output of the active decryption operation. This issue comes up only when the
mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which
will simultaneously decrypt this ciphertext and verify a signature on the original plaintext
thereby obtained.

After initializing decryption and verification operations, the application passes the 24-
byte ciphertext 3 DES blocks) into C_DecryptVerifyUpdate.
C_DecryptVerifyUpdate returns exactly 16 bytes of plaintext, since at this point,
Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of
ciphertext held any padding. These 16 bytes of plaintext are passed into the active
verification operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of
plaintext. However, since the active decryption and verification operations are linked
only through the C_DecryptVerifyUpdate call, these 2 bytes of plaintext are not passed
on to the verification mechanism.

A call to C_VerifyFinal, therefore, would verify whether or not the signature supplied is
a valid signature on the first 16 bytes of the plaintext, not on the entire plaintext. It is
crucial that, before C_VerifyFinal is called, the last 2 bytes of plaintext get passed into
the active verification operation via a C_VerifyUpdate call.

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptVerifyUpdate, it knows exactly how much plaintext has
been passed into the active verification operation. Extreme caution is warranted when
using a padded decryption mechanism with C_DecryptVerifyUpdate.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR_DATA LEN RANGE,
CKR_DEVICE _ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_ENCRYPTED DATA INVALID, CKR ENCRYPTED DATA LEN RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR_OK,
CKR_OPERATION NOT INITIALIZED, CKR_SESSION CLOSED,
CKR_SESSION HANDLE INVALID.

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS

Example:

#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hDecrypti onKey, hMacKey;
CK_BYTE i v][ 8];
CK_MECHANI SM decr ypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)
1
CK_MECHANI SM veri fyMechani sm = {
CKM DES MAC, NULL_PTR, O
1
CK_BYTE encrypt edDat a[ ( 2* BUF_SZ) +8] ;
CK_BYTE MAC 4] ;
CK_ULONG ul MacLen;
CK_BYTE dat a] BUF_SZ] ;
CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK RV ryv;

menset (iv, 0, sizeof(iv));

nmenset (encryptedData, ‘A, ((2*BUF_SZ)+8));

rv = C Decryptlnit(hSession, &decryptionMechani sm
hDecrypti onKey) ;

if (rv 1= CKR.OK) {

}
rv = C Verifylnit(hSession, &verifyMechani sm hMacKey);
if (rv = CKR_XK){

}

ul Dat aLen = si zeof (data);

rv = C Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[ 0], BUF_SZ,
data, &ul DatalLen);

ul Dat aLen = si zeof (data);

rv = C Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[ BUF_SZ], BUF_SZ,
data, &ul datalen);

173

June 2004 Copyright © 2004 RSA Security Inc.



174 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

/*
* The |l ast portion of the buffer needs to be handl ed
with
* separate calls to deal wth padding i ssues in ECB node
*/

/[* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (dat a);
rv = C _Decrypt Updat e(

hSessi on,

&encrypt edDat a[ BUF_SZ*2], 8,

dat a, &ul Last Updat eSi ze) ;

/* Get last little piece of plaintext. Should have
length 0 */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C DecryptFi nal (hSessi on, &dat a[ ul Last Updat eSi ze],
&ul Dat aLen) ;

if (rv 1= CKR.OK) {

}

/* Send last bit of plaintext to verification operation
*/

rv = C VerifyUpdat e(hSessi on, &data[ BUF_SzZ*2], 5);

if (rv 1= CKR.OK) {

}
rv = C VerifyFinal (hSession, MAC, ul MacLen);

if (rv == CKR_SI GNATURE_| NVALI D) {

}
11.14 Key management functions

Cryptoki provides the following functions for key management:

Copyright © 2004 RSA Security Inc. June 2004



11. FUNCTIONS 175

¢ C_GenerateKey

CK_DEFI NE_FUNCTI ON( CK_RV, C _Gener at eKey) (
CK_SESSI ON_HANDLE hSessi on
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE PTR phKey
)

C_GenerateKey generates a secret key or set of domain parameters, creating a new
object. hSession 1is the session’s handle; pMechanism points to the generation
mechanism; pTemplate points to the template for the new key or set of domain
parameters; u/Count is the number of attributes in the template; phKey points to the
location that receives the handle of the new key or set of domain parameters.

If the generation mechanism is for domain parameter generation, the CKA_CLASS
attribute will have the value CKO _DOMAIN PARAMETERS; otherwise, it will have
the value CKO_SECRET KEY.

Since the type of key or domain parameters to be generated is implicit in the generation
mechanism, the template does not need to supply a key type. If it does supply a key type
which is inconsistent with the generation mechanism, C_GenerateKey fails and returns
the error code CKR_ TEMPLATE INCONSISTENT. The CKA CLASS attribute is
treated similarly.

If a call to C_GenerateKey cannot support the precise template supplied to it, it will fail
and return without creating an object.

The object created by a successful call to C_GenerateKey will have its CKA_LOCAL
attribute set to CK_TRUE.

Return values: CKR_ ARGUMENTS BAD, CKR_ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI NOT _INITIALIZED, CKR_DEVICE ERROR,

CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,

CKR_FUNCTION CANCELED, CKR_FUNCTION FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM PARAM INVALID, CKR_OK, CKR_OPERATION ACTIVE,
CKR_PIN_EXPIRED, CKR SESSION CLOSED,
CKR_SESSION HANDLE INVALID, CKR SESSION READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_ WRITE PROTECTED, CKR_USER_NOT LOGGED IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;

June 2004 Copyright © 2004 RSA Security Inc.




176 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_MECHANI SM nechani sm = {
CKM_DES_KEY_GEN, NULL_PTR, 0

s
CK RV ryv;

'rv = C_Cener at eKey(hSessi on, &mechanism NULL_PTR, O,
&hKey) ;
if (rv == CKR_XK) {

}

¢ C_GenerateKeyPair

CK_DEFI NE_FUNCTI ON( CK_RV, C Cenerat eKeyPair) (
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_ATTRI BUTE_PTR pPubl i cKeyTenpl at e,
CK_ULONG ul Publ i cKeyAttri but eCount,
CK_ATTRI BUTE_PTR pPri vat eKeyTenpl at e,
CK_ULONG ul Privat eKeyAttri but eCount,
CK_OBJECT_HANDLE_PTR phPubl i cKey,
CK_OBJECT_HANDLE PTR phPri vat eKey

) |

C_GenerateKeyPair generates a public/private key pair, creating new key objects.
hSession is the session’s handle; pMechanism points to the key generation mechanism;
pPublicKeyTemplate  points to  the  template for the public key;
ulPublicKeyAttributeCount is the number of attributes in the public-key template;
pPrivateKeyTemplate  points to the template for the private key;
ulPrivateKeyAttributeCount is the number of attributes in the private-key template;
phPublicKey points to the location that receives the handle of the new public key;
phPrivateKey points to the location that receives the handle of the new private key.

Since the types of keys to be generated are implicit in the key pair generation mechanism,
the templates do not need to supply key types. If one of the templates does supply a key
type which is inconsistent with the key generation mechanism, C_GenerateKeyPair
fails and returns the error code CKR TEMPLATE INCONSISTENT. The
CKA_CLASS attribute is treated similarly.

If a call to C_GenerateKeyPair cannot support the precise templates supplied to it, it
will fail and return without creating any key objects.

A call to C_GenerateKeyPair will never create just one key and return. A call can fail,
and create no keys; or it can succeed, and create a matching public/private key pair.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 177

The key objects created by a successful call to C_GenerateKeyPair will have their
CKA_LOCAL attributes set to CK_TRUE.

Note carefully the order of the arguments to C_GenerateKeyPair. The last two
arguments do not have the same order as they did in the original Cryptoki Version 1.0
document. The order of these two arguments has caused some unfortunate confusion.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE TYPE INVALID, CKR ATTRIBUTE VALUE INVALID,
CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,

CKR_DEVICE MEMORY, CKR_DEVICE _REMOVED,

CKR_DOMAIN PARAMS INVALID, CKR_FUNCTION CANCELED,
CKR_FUNCTION FAILED, CKR_ GENERAL ERROR, CKR_HOST MEMORY,
CKR_MECHANISM INVALID, CKR MECHANISM PARAM INVALID, CKR OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION READ ONLY,
CKR_TEMPLATE INCOMPLETE, CKR_ TEMPLATE INCONSISTENT,
CKR_TOKEN WRITE PROTECTED, CKR USER NOT LOGGED IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPrivat eKey;
CK_MECHANI SM nmechani sm = {

CKM RSA PKCS KEY_PAI R GEN, NULL_PTR, 0
3

CK_ULONG nodul usBits = 768;
CK_BYTE publicExponent[] = { 3 };
CK_BYTE subject[] ={...};
CK_BYTE id[] = {123};
CK BBOOL true = CK TRUE
CK_ATTRI BUTE publ i cKeyTenmpl ate[] = {
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VERI FY, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA _MODULUS BI TS, &nodul usBits, sizeof(nodulusBits)},
{ CKA _PUBLI C_EXPONENT, publicExponent, sizeof
(publ i cExponent)}

CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA TOKEN, &true, sizeof(true)},
{CKA PRI VATE, &true, sizeof(true)},

{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI Tl VE, &true, sizeof(true)},

{ CKA_DECRYPT, &true, sizeof(true)},
{CKA SIGN, &t rue, sizeof(true)},

{ CKA_UNVRAP, &true, sizeof(true)}

b

June 2004 Copyright © 2004 RSA Security Inc.



178 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_ RV rv;

rv = C_Gener at eKeyPai r (
hSessi on, &mrechani sm
publ i cKeyTenpl ate, 5,
privat eKeyTenpl ate, 8,
&Publ i cKey, &hPrivat eKey);
if (rv == CKR_X) {

}

¢ C WrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_W apKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hW appi ngKey,
CK_OBJECT_HANDLE hKey,

CK_BYTE_PTR pW appedKey,
CK_ULONG_PTR pul W appedKeyLen
);

C_WrapKey wraps (i.e., encrypts) a private or secret key. ASession is the session’s
handle; pMechanism points to the wrapping mechanism; 42WrappingKey is the handle of
the wrapping key; hKey is the handle of the key to be wrapped; pWrappedKey points to
the location that receives the wrapped key; and pul/WrappedKeyLen points to the location
that receives the length of the wrapped key.

C_WrapKey uses the convention described in Section 11.2 on producing output.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key
supports wrapping, must be CK_ TRUE. The CKA_EXTRACTABLE attribute of the
key to be wrapped must also be CK_TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its
having its CKA EXTRACTABLE attribute set to CK_TRUE, then C_WrapKey fails
with error code CKR KEY NOT WRAPPABLE. If it cannot be wrapped with the
specified wrapping key and mechanism solely because of its length, then C_WrapKey
fails with error code CKR_KEY SIZE RANGE.

C_WrapKey can be used in the following situations:
* To wrap any secret key with a public key that supports encryption and decryption.

* To wrap any secret key with any other secret key. Consideration must be given to key
size and mechanism strength or the token may not allow the operation.

* To wrap a private key with any secret key.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 179

Of course, tokens vary in which types of keys can actually be wrapped with which
mechanisms.

To partition the wrapping keys so they can only wrap a subset of extractable keys the
attribute CKA_WRAP TEMPLATE can be used on the wrapping key to specify an
attribute set that will be compared against the attributes of the key to be wrapped. If all
attributes match according to the C_FindObject rules of attribute matching then the wrap
will proceed. The value of this attribute is an attribute template and the size is the number
of items in the template times the size of CK ATTRIBUTE. If this attribute is not
supplied then any template is acceptable. Attributes not present are not checked. If any
attribute mismatch occurs on an attempt to wrap a key then the function shall return
CKR _KEY HANDLE INVALID.

Return Values: CKR_ ARGUMENTS_BAD, CKR_BUFFER_TOO SMALL,
CKR_CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR,
CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL ERROR, CKR_HOST MEMORY,

CKR_KEY HANDLE INVALID, CKR KEY NOT WRAPPABLE,

CKR KEY SIZE RANGE, CKR KEY UNEXTRACTABLE,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM INVALID, CKR OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION CLOSED,
CKR_SESSION_HANDLE INVALID, CKR USER NOT LOGGED IN,
CKR_WRAPPING KEY HANDLE INVALID,

CKR_WRAPPING KEY SIZE RANGE,

CKR_WRAPPING KEY TYPE INCONSISTENT.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hW appi ngKey, hKey;
CK_MECHANI SM nmechani sm = {

CKM _DES3_ECB, NULL_PTR, O
1

CK_BYTE w appedKey|[ 8] ;
CK_ULONG ul W appedKeyLen;
CK RV rv;

ul W appedKeyLen = si zeof (w appedKey) ;
rv = C_WapKey(

hSessi on, &mechani sm

hW appi ngKey, hKey,

wr appedKey, &ul W appedKeylLen);
if (rv == CKR_.K) {

June 2004 Copyright © 2004 RSA Security Inc.



180 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}

¢ C_UnwrapKey

CK_DEFI NE_FUNCTI ON( CK_RV, C_Unwr apKey) (
CK_SESSI ON_ HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hUnwr appi ngKey,
CK_BYTE_PTR pW appedKey,
CK_ULONG ul W appedKeyLen,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or
secret key object. hSession is the session’s handle; pMechanism points to the unwrapping
mechanism; hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points
to the wrapped key; ulWrappedKeyLen is the length of the wrapped key; pTemplate
points to the template for the new key; ulAttributeCount is the number of attributes in the
template; phKey points to the location that receives the handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key
supports unwrapping, must be CK_TRUE.

The new key will have the CKA ALWAYS_SENSITIVE attribute set to CK_FALSE,
and the CKA NEVER EXTRACTABLE attribute set to CK FALSE. The
CKA EXTRACTABLE attribute is by default set to CK_TRUE.

Some mechanisms may modify, or attempt to modify. the contents of the pMechanism
structure at the same time that the key is unwrapped.

If a call to C_UnwrapKey cannot support the precise template supplied to it, it will fail
and return without creating any key object.

The key object created by a successful call to C_UnwrapKey will have its
CKA_LOCAL attribute set to CK_FALSE.

To partition the unwrapping keys so they can only unwrap a subset of keys the attribute
CKA UNWRAP TEMPLATE can be used on the unwrapping key to specify an attribute
set that will be added to attributes of the key to be unwrapped. If the attributes do not
conflict with the user supplied attribute template, in ‘pTemplate’, then the unwrap will
proceed. The value of this attribute is an attribute template and the size is the number of
items in the template times the size of CK_ATTRIBUTE. If this attribute is not present
on the unwrapping key then no additional attributes will be added. If any attribute
conflict occurs on an attempt to unwrap a key then the function shall return
CKR _TEMPLATE INCONSISTENT.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 181

Return values: CKR_ ARGUMENTS BAD, CKR_ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE TYPE INVALID, CKR ATTRIBUTE VALUE INVALID,
CKR_BUFFER_TOO SMALL, CKR_CRYPTOKI NOT INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,
CKR_DOMAIN PARAMS INVALID, CKR FUNCTION CANCELED,
CKR_FUNCTION FAILED, CKR_GENERAL ERROR, CKR HOST MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM INVALID, CKR OK,
CKR_OPERATION_ACTIVE, CKR_PIN EXPIRED, CKR _SESSION CLOSED,
CKR_SESSION HANDLE INVALID, CKR_SESSION READ ONLY,
CKR_TEMPLATE INCOMPLETE, CKR_ TEMPLATE INCONSISTENT,
CKR_TOKEN WRITE PROTECTED,
CKR_UNWRAPPING KEY HANDLE INVALID,
CKR_UNWRAPPING KEY SIZE RANGE,
CKR_UNWRAPPING KEY TYPE INCONSISTENT,
CKR_USER_NOT_LOGGED IN, CKR_WRAPPED KEY INVALID,
CKR_WRAPPED KEY LEN RANGE.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_OBJECT_HANDLE hUnwr appi ngKey, hKey;
CK_MECHANI SM nmechani sm = {

CKM _DES3_ECB, NULL_PTR, O
};
CK_BYTE w appedKey[8] = {...};
CK_OBJECT_CLASS keyd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CK BBOOL true = CK TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &keyd ass, sizeof (keyd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA DECRYPT, &true, sizeof(true)}
1
CK_ RV ryv;

rv = C_Unwr apKey(

hSessi on, &mechani sm hUnw appi ngKey,

wr appedKey, sizeof (wappedKey), tenplate, 4, &hKey);
if (rv == CKR_X) {

June 2004 Copyright © 2004 RSA Security Inc.



182 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C_DeriveKey

CK_DEFI NE_FUNCTI ON(CK_RV, C Deri veKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

);

C_DeriveKey derives a key from a base key, creating a new key object. hSession is the
session’s handle; pMechanism points to a structure that specifies the key derivation
mechanism; /BaseKey is the handle of the base key; pTemplate points to the template for
the new key; ulAdttributeCount is the number of attributes in the template; and phKey
points to the location that receives the handle of the derived key.

The values of the CK_SENSITIVE, CK_ALWAYS_SENSITIVE,
CK_EXTRACTABLE, and CK_NEVER_EXTRACTABLE attributes for the base key
affect the values that these attributes can hold for the newly-derived key. See the
description of each particular key-derivation mechanism in Section 11.17.2 for any
constraints of this type.

If a call to C_DeriveKey cannot support the precise template supplied to it, it will fail
and return without creating any key object.

The key object created by a successful call to C_DeriveKey will have its CKA_LOCAL
attribute set to CK_FALSE.

Return values: CKR_ ARGUMENTS BAD, CKR_ATTRIBUTE READ ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI NOT _INITIALIZED, CKR_DEVICE ERROR,

CKR_DEVICE MEMORY, CKR_DEVICE REMOVED,

CKR_DOMAIN PARAMS INVALID, CKR_FUNCTION CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_KEY HANDLE INVALID, CKR_KEY SIZE RANGE,

CKR _KEY TYPE INCONSISTENT, CKR MECHANISM INVALID,
CKR_MECHANISM PARAM INVALID, CKR OK, CKR_OPERATION ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION _READ ONLY,
CKR_TEMPLATE INCOMPLETE, CKR_ TEMPLATE INCONSISTENT,
CKR_TOKEN WRITE PROTECTED, CKR USER NOT LOGGED IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPrivateKey, hKey;
CK_MECHANI SM keyPai r Mechani sm = {

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 183

CKM DH_PKCS_KEY_PAIR_GEN, NULL_PTR 0
1
CK_ BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE publ i cVal ue[ 128]
CK_BYTE ot her Publ i cVal ue[ 128] ;
CK_MECHANI SM mechani sm = {

CKM DH PKCS_DERI VE, ot her Publ i cVal ue,

si zeof (ot her Publ i cVal ue)

CK_ATTRI BUTE pTenpl ate[] = {

CKA VALUE, &publicVal ue, sizeof (publicVal ue)}
1
CK_OBJECT_CLASS keyd ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE publ i cKeyTenpl ate[] = {

{CKA PRI MVE, prinme, sizeof(prine)},

{ CKA BASE, base, sizeof (base)}

CK_ATTRI BUTE pri vat ekeyTenpl ate[] = {
{CKA DERI VE, &true, sizeof(true)}

CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, é&keyd ass, sizeof(keyd ass)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)}

1

CK_ RV rv;

rv = C_Gener at eKeyPai r (
hSessi on, &keyPai r Mechani sm
publ i cKeyTenpl ate, 2,
privat eKeyTenpl ate, 1,
&Publ i cKey, &hPrivat eKey);
if (rv == CKR_XK) {
rv = C GetAttributeVal ue(hSessi on, hPubli cKey,
& Tenpl ate, 1);
if (rv == CKR_XK) {
/* Put other guy’s public value in otherPublicVal ue
*/

rv = C DeriveKey(

hSessi on, &mrechani sm

hPrivat eKey, tenplate, 4, &hKey);
if (rv == CKR_.OK) {

June 2004 Copyright © 2004 RSA Security Inc.



184 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}
}
}

11.15 Random number generation functions

Cryptoki provides the following functions for generating random numbers:

¢ C_SeedRandom

CK_DEFI NE_FUNCTI ON( CK_RV, C_SeedRandom (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pSeed,

CK_ULONG ul SeedLen

);

C_SeedRandom mixes additional seed material into the token’s random number
generator. hSession is the session’s handle; pSeed points to the seed material; and
ulSeedLen is the length in bytes of the seed material.

Return values: CKR_ARGUMENTS BAD, CKR CRYPTOKI NOT INITIALIZED,
CKR_DEVICE ERROR, CKR DEVICE MEMORY, CKR DEVICE REMOVED,
CKR_FUNCTION_ CANCELED, CKR_FUNCTION FAILED,

CKR_GENERAL ERROR, CKR_HOST MEMORY, CKR OK,
CKR_OPERATION ACTIVE, CKR_RANDOM SEED NOT SUPPORTED,
CKR_RANDOM NO RNG, CKR SESSION CLOSED,

CKR_SESSION HANDLE INVALID, CKR USER NOT LOGGED IN.

Example: see C_GenerateRandom.

¢ C_GenerateRandom

CK_DEFI NE_FUNCTI ON( CK_RV, C _Cener at eRandom (
CK_SESSI ON_ HANDLE hSessi on,
CK_BYTE_PTR pRandonDat a,
CK_ULONG ul Randonien

);

C_GenerateRandom generates random or pseudo-random data. ASession is the session’s
handle; pRandomData points to the location that receives the random data; and
ulRandomLen 1is the length in bytes of the random or pseudo-random data to be
generated.

Return values: CKR_ARGUMENTS BAD, CKR CRYPTOKI NOT INITIALIZED,
CKR_DEVICE ERROR, CKR DEVICE MEMORY, CKR DEVICE REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_ FAILED,

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 185

CKR_GENERAL ERROR, CKR HOST MEMORY, CKR OK,
CKR_OPERATION ACTIVE, CKR_ RANDOM NO RNG,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT LOGGED_IN.

Example:

CK_SESSI ON_ HANDLE hSessi on;
CK_BYTE seed[] = {...};
CK_BYTE randomData[] = {...};
CK RV rv;

'rv = C_SeedRandom( hSessi on, seed, sizeof(seed));
if (rv 1= CKR.OK) {

}
rv = C_Gener at eRandon{ hSessi on, randonDat a,

si zeof (randonDat a) ) ;
if (rv == CKR.X) {

}
11.16 Parallel function management functions

Cryptoki provides the following functions for managing parallel execution of
cryptographic functions. These functions exist only for backwards compatibility.

¢ C_GetFunctionStatus

CK_DEFI NE_FUNCTI ON( CK_RV, C Get FunctionSt at us) (
CK_SESSI ON_ HANDLE hSessi on

) |

In previous versions of Cryptoki, C_GetFunctionStatus obtained the status of a function
running in parallel with an application. Now, however, C_GetFunctionStatus is a
legacy function which should simply return the value
CKR _FUNCTION NOT PARALLEL.

Return values: CKR_CRYPTOKI _NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION NOT PARALLEL, CKR_GENERAL ERROR,

CKR_HOST MEMORY, CKR SESSION HANDLE INVALID,

CKR_SESSION CLOSED.

June 2004 Copyright © 2004 RSA Security Inc.




186 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ C _CancelFunction

CK_DEFI NE_FUNCTI ON( CK_RV, C_Cancel Functi on) (
CK_SESSI ON_HANDLE hSessi on
);

In previous versions of Cryptoki, C_CancelFunction cancelled a function running in
parallel with an application. Now, however, C_CancelFunction is a legacy function
which should simply return the value CKR_FUNCTION NOT PARALLEL.

Return values: CKR_CRYPTOKI _NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION NOT PARALLEL, CKR_GENERAL ERROR,

CKR_HOST MEMORY, CKR SESSION HANDLE INVALID,

CKR_SESSION CLOSED.

11.17 Callback functions

Cryptoki sessions can use function pointers of type CK_NOTIFY to notify the
application of certain events.

11.17.1 Surrender callbacks

Cryptographic functions (i.e., any functions falling under one of these categories:
encryption functions; decryption functions; message digesting functions; signing and
MACing functions; functions for verifying signatures and MACs; dual-purpose
cryptographic functions; key management functions; random number generation
functions) executing in Cryptoki sessions can periodically surrender control to the
application who called them if the session they are executing in had a notification
callback function associated with it when it was opened. They do this by calling the
session’s callback with the arguments (hSession, CKN_SURRENDER,
pAppl i cati on), where hSessi on is the session’s handle and pAppl i cati on was
supplied to C_OpenSession when the session was opened. Surrender callbacks should
return either the value CKR OK (to indicate that Cryptoki should continue executing the
function) or the value CKR_CANCEL (to indicate that Cryptoki should abort execution
of the function). Of course, before returning one of these values, the callback function
can perform some computation, if desired.

A typical use of a surrender callback might be to give an application user feedback
during a lengthy key pair generation operation. Each time the application receives a
callback, it could display an additional “.” to the user. It might also examine the
keyboard’s activity since the last surrender callback, and abort the key pair generation
operation (probably by returning the value CKR _CANCEL) if the user hit <ESCAPE>.

A Cryptoki library is not required to make any surrender callbacks.

Copyright © 2004 RSA Security Inc. June 2004




11. FUNCTIONS 187

11.17.2 Vendor-defined callbacks

Library vendors can also define additional types of callbacks. Because of this extension
capability, application-supplied notification callback routines should examine each
callback they receive, and if they are unfamiliar with the type of that callback, they
should immediately give control back to the library by returning with the value
CKR OK.

June 2004 Copyright © 2004 RSA Security Inc.



188 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12 Mechanisms
A mechanism specifies precisely how a certain cryptographic process is to be performed.

The following table shows which Cryptoki mechanisms are supported by different
cryptographic operations. For any particular token, of course, a particular operation may
well support only a subset of the mechanisms listed. There is also no guarantee that a
token which supports one mechanism for some operation supports any other mechanism
for any other operation (or even supports that same mechanism for any other operation).
For example, even if a token is able to create RSA digital signatures with the
CKM_RSA_PKCS mechanism, it may or may not be the case that the same token can
also perform RSA encryption with CKM_RSA_PKCS.

Table 34, Mechanisms vs. Functions

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR! Key Unwrap
Pair
CKM_RSA PKCS KEY PAIR GEN v
CKM_RSA X9 31 KEY_PAIR_GEN v
CKM_RSA_PKCS v? v? v v
CKM_RSA_PKCS_OAEP v? v
CKM_RSA PKCS PSS v?
CKM _RSA 9796 v? v
CKM _RSA X 509 v? v? v v
CKM_RSA X9 31 v?
CKM_MD2 RSA PKCS
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA384 RSA PKCS
CKM_SHA512_RSA_PKCS
CKM_RIPEMDI128_RSA_PKCS
CKM_RIPEMDI160 RSA PKCS
CKM_SHA1 RSA_PKCS PSS
CKM_SHA256_RSA_PKCS PSS
CKM_SHA384_RSA_PKCS_PSS
CKM_SHAS12 RSA_PKCS_PSS
CKM_SHAI RSA_X9 31
CKM_DSA_KEY PAIR _GEN v
CKM_DSA_PARAMETER_GEN v
CKM_DSA v?
CKM_DSA SHAI v
CKM_FORTEZZA_TIMESTAMP v?

CKM_EC_KEY PAIR_GEN v
(CKM_ECDSA_KEY_PAIR_GEN)

CKM_ECDSA v?
CKM_ECDSA_SHAI v
CKM_ECDHI1_DERIVE v

ANIRNEENIEN NN EENENEN NN RN RN

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS

189

Mechanism

Functions

Encrypt
&
Decrypt

Sign

Verify

SR

VR!

Gen.
Digest Key/
Key
Pair

Wrap
&
Unwrap

Derive

CKM_ECDHI1_COFACTOR_DERIVE

CKM_ECMQV_DERIVE

CKM _DH_PKCS_KEY PAIR_GEN

CKM_DH_PKCS_PARAMETER_GEN

CKM_DH_PKCS_DERIVE

CKM_X9 42 DH KEY_PAIR_GEN

CKM X9 42 DH PKCS PARAMETER GEN

CKM X9 42 DH DERIVE

CKM_X9 42 DH_HYBRID DERIVE

CKM_X9 42 MQV_DERIVE

CKM_KEA _KEY PAIR_GEN

CKM _KEA _KEY DERIVE

CKM_GENERIC_SECRET KEY GEN

CKM _RC2_KEY_GEN

CKM _RC2_ECB

CKM_RC2_CBC

CKM_RC2_CBC_PAD

CKM_RC2_MAC_GENERAL

CKM_RC2_MAC

CKM _RC4 KEY_GEN

CKM_RC4

CKM _RC5 KEY_GEN

CKM _RC5_ECB

CKM _RC5 _CBC

CKM_RC5_CBC_PAD

CKM_RC5_MAC_GENERAL

CKM _RC5 MAC

CKM_AES KEY GEN

CKM_AES_ECB

CKM_AES_CBC

CKM_AES_CBC_PAD

CKM_AES MAC_GENERAL

CKM_AES_MAC

CKM _DES_KEY GEN

CKM _DES ECB

CKM_DES CBC

CKM_DES_CBC_PAD

CKM_DES MAC_GENERAL

CKM_DES MAC

CKM _DES2 KEY GEN

CKM_DES3 KEY GEN

CKM _DES3_ECB

CKM_DES3_CBC

CKM_DES3 CBC_PAD

CKM_DES3 MAC_GENERAL

CKM_DES3_MAC

CKM_CAST KEY_GEN

CKM_CAST ECB

June 2004

Copyright © 2004 RSA Security Inc.



190 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR Key | Unwrap
Pair
CKM_CAST_CBC v v
CKM_CAST_CBC_PAD v v
CKM_CAST _MAC_GENERAL v
CKM_CAST_MAC v
CKM_CAST3_KEY_GEN v
CKM_CAST3_ECB v v
CKM_CAST3_CBC v v
CKM_CAST3_CBC_PAD v v
CKM_CAST3_MAC_GENERAL v
CKM_CAST3_MAC v

CKM_CASTI128 KEY GEN v
(CKM_CAST5 KEY_GEN)

CKM_CASTI28_ECB (CKM_CAST5_ECB) v v
CKM_CASTI128_CBC (CKM_CAST5_CBC) v v

CKM_CASTI128_CBC_PAD v v
(CKM_CAST5_CBC_PAD)

CKM_CAST128 MAC_GENERAL v
(CKM_CAST5 MAC_GENERAL)

CKM_CAST128 MAC (CKM_CAST5 MAC) v
CKM_IDEA_KEY_GEN v
CKM _IDEA_ECB v v
CKM_IDEA_CBC v v
CKM_IDEA_CBC_PAD v v
CKM_IDEA_MAC_GENERAL v
CKM_IDEA_MAC v
CKM_CDMF _KEY_GEN v
CKM_CDMF_ECB v v
CKM_CDMF_CBC v v
CKM_CDMF_CBC_PAD v v
CKM_CDMF_MAC_GENERAL v
CKM_CDMF_MAC v
CKM _DES_ECB_ENCRYPT DATA

CKM _DES_CBC_ENCRYPT DATA

CKM _DES3 ECB_ENCRYPT DATA
CKM _DES3 CBC_ENCRYPT DATA
CKM_AES_ECB_ENCRYPT DATA

CKM_AES CBC_ENCRYPT DATA

CKM_SKIPJACK_KEY_GEN v
CKM_SKIPJACK_ECB64
CKM_SKIPJACK_CBC64
CKM_SKIPJACK_OFB64
CKM_SKIPJACK_CFB64
CKM_SKIPJACK_CFB32
CKM_SKIPJACK_CFB16
CKM_SKIPJACK_CFBS

CKM_SKIPJACK_WRAP v
CKM_SKIPJACK_PRIVATE WRAP v
CKM_SKIPJACK_RELAYX 3

ANERNEEN NN N

ANERNERNERNERNERNERN

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS

191

Mechanism

Functions

Encrypt
&
Decrypt

Sign

Verify

SR

VR!

Gen. Wrap
Digest Key/ &
Key Unwrap

Derive

Pair

CKM_BATON KEY GEN

CKM_BATON_ECBI128

CKM_BATON_ECB96

CKM_BATON_CBC128

CKM_BATON_COUNTER

CKM_BATON_SHUFFLE

ANERNERNERNERN

CKM_BATON_WRAP

CKM _JUNIPER_KEY GEN

CKM_JUNIPER_ECB128

CKM_JUNIPER_CBC128

CKM_JUNIPER_COUNTER

CKM_JUNIPER_SHUFFLE

ANERNERNERN

CKM_JUNIPER_WRAP

CKM_MD2

CKM_MD2_HMAC_GENERAL

CKM_MD2_HMAC

CKM_MD2 KEY_DERIVATION

CKM_MD5

CKM_MD5_HMAC_GENERAL

CKM_MD5_HMAC

CKM_MD5_KEY_DERIVATION

CKM SHA_1

CKM _SHA | HMAC_GENERAL

CKM_SHA_| HMAC

CKM_SHA1_KEY_DERIVATION

CKM_SHA256

CKM_SHA256 HMAC_GENERAL

CKM_SHA256_HMAC

CKM_SHA256_KEY_DERIVATION

CKM_SHA384

CKM_SHA384 HMAC_GENERAL

CKM_SHA384 HMAC

CKM_SHA384_KEY_DERIVATION

CKM_SHAS512

CKM_SHA512 HMAC_GENERAL

CKM_SHA512 HMAC

CKM_SHAS12_KEY_DERIVATION

CKM_RIPEMDI128

CKM_RIPEMDI128 HMAC_GENERAL

CKM _RIPEMD128 HMAC

CKM_RIPEMD160

CKM_RIPEMD160_HMAC_GENERAL

CKM_RIPEMDI160_HMAC

CKM_FASTHASH

CKM_PBE MD2_DES_CBC

CKM_PBE_MD5 DES_CBC

CKM_PBE_MD5 _CAST CBC

CKM _PBE_MDS5_CAST3 CBC

ANERNERN BN

June 2004

Copyright © 2004 RSA Security Inc.



192 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Functions

Encrypt Sign SR Gen. Wrap
Mechanism & & & Digest Key/ & Derive
Decrypt | Verify | VR Key | Unwrap
Pair
CKM_PBE_MDS5_CAST128 CBC v

(CKM_PBE_MD5_CAST5_CBC)

CKM_PBE SHAI CASTI28 CBC
(CKM_PBE_SHA1_CAST5_CBC)

CKM _PBE_SHA1 RC4 128
CKM_PBE_SHA1 RC4 40

CKM _PBE_SHA1 DES3_EDE_CBC
CKM _PBE_SHA1 DES2 EDE_CBC
CKM _PBE_SHA1 RC2 128 CBC
CKM_PBE_SHAI RC2 40 _CBC

CKM _PBA_SHA1 WITH_SHAI HMAC
CKM_PKCS5 PBKD2

CKM_KEY WRAP SET OAEP v
CKM_KEY_WRAP_LYNKS v
CKM _SSL3_PRE_MASTER KEY GEN v
CKM_SSL3 MASTER KEY DERIVE v
CKM_SSL3 MASTER KEY DERIVE DH v
CKM _SSL3 KEY_AND MAC DERIVE v
CKM _SSL3_MD5 MAC v
CKM_SSL3_SHAI1 MAC v
CKM_TLS PRE_MASTER KEY GEN v
CKM_TLS MASTER_KEY DERIVE
CKM_TLS MASTER_KEY DERIVE DH
CKM_TLS KEY AND MAC_DERIVE
CKM_TLS PRF
CKM_WTLS_PRE_MASTER _KEY GEN v
CKM_WTLS_MASTER_KEY DERIVE
CKM_WTLS MASTER_KEY DERIVE DH_ECC
CKM_WTLS_SERVER_KEY AND MAC _DERIVE
CKM_WTLS_CLIENT KEY_AND_MAC_DERIVE
CKM_WTLS_PRF

CKM_CMS_SIG v v
CKM_CONCATENATE BASE_AND KEY
CKM_CONCATENATE_BASE_AND DATA
CKM_CONCATENATE_DATA_AND BASE
CKM_XOR_BASE_AND DATA
CKM_EXTRACT KEY FROM_KEY

<«

AN I Y BN AN BN

ANERNERN IR N

ANERNERNERN BN

SERRE

"SR = SignRecover, VR = VerifyRecover.
? Single-part operations only.
3 Mechanism can only be used for wrapping, not unwrapping.

The remainder of this section will present in detail the mechanisms supported by
Cryptoki and the parameters which are supplied to them.

In general, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen
fields of the CK_ MECHANISM INFO structure, then those fields have no meaning for
that particular mechanism.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 193

12.1 RSA

12.1.1 Definitions

This section defines the RSA key type “CKK RSA” for type CK_KEY TYPE as used in
the CKA_KEY_ TYPE attribute of RSA key objects.

Mechanisms:

CKM RSA_PKCS_KEY_PAI R_GEN
CKM_RSA_PKCS

CKM_RSA_ 9796
CKM_RSA_X_509
CKM_MD2_RSA_PKCS
CKM_MD5_RSA_PKCS
CKM_SHAL RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM Rl PEMD128_RSA_PKCS
CKM_RI PEMD160_RSA_PKCS
CKM_RSA_PKCS_OAEP
CKM_RSA_X9 31 KEY_PAI R_GEN
CKM_RSA_X9_31
CKM_SHAL RSA X9 31
CKM_RSA_PKCS_PSS
CKM_SHAL_RSA_PKCS_PSS
CKM_SHA256 RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS_PSS

12.1.2 RSA public key objects

RSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_RSA) hold
RSA public keys. The following table defines the RSA public key object attributes, in
addition to the common attributes defined for this object class:

Table 35, RSA Public Key Object Attributes

Attribute Data type Meaning

CKA MODULUS" Big integer Modulus n
CKA_MODULUS_BITS*’ CK_ULONG | Length in bits of modulus 7
CKA PUBLIC_EXPONENT! Big integer Public exponent e

“Refer to table Table 15 for footnotes

Depending on the token, there may be limits on the length of key components. See PKCS
#1 for more information on RSA keys.

June 2004 Copyright © 2004 RSA Security Inc.



194 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The following is a sample template for creating an RSA public key object:

CK_OBJECT _CLASS cl ass = CKO _PUBLI C KEY;
CK_KEY_TYPE keyType = CKK RSA:
CK_UTF8CHAR | abel [] “An RSA public key object”;
CK_BYTE nodul us[] = {...};
CK_BYTE exponent[] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{CKA WRAP, &true, sizeof(true)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA _MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

b
12.1.3 RSA private key objects

RSA private key objects (object class CKO_PRIVATE _KEY, key type CKK_RSA)
hold RSA private keys. The following table defines the RSA private key object
attributes, in addition to the common attributes defined for this object class:

Table 36, RSA Private Key Object Attributes

Attribute Data type | Meaning
CKA_MODULUS"** Big integer | Modulus n
CKA_PUBLIC_EXPONENT*® Big integer | Public exponent e
CKA PRIVATE EXPONENT!*®” | Big integer | Private exponent d

CKA_PRIME_1*%7 Big integer | Prime p

CKA PRIME 2*%7 Big integer | Prime ¢

CKA_EXPONENT 1%%7 Big integer | Private exponent d modulo p-1
CKA EXPONENT 2%’ Big integer | Private exponent d modulo g-1
CKA_COEFFICIENT**’ Big integer | CRT coefficient g mod p

“Refer to table Table 15 for footnotes

Depending on the token, there may be limits on the length of the key components. See
PKCS #1 for more information on RSA keys.

Tokens vary in what they actually store for RSA private keys. Some tokens store all of
the above attributes, which can assist in performing rapid RSA computations. Other
tokens might store only the CKA_MODULUS and CKA_PRIVATE_EXPONENT
values.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 195

Because of this, Cryptoki is flexible in dealing with RSA private key objects. When a
token generates an RSA private key, it stores whichever of the fields in Table 36 it keeps
track of. Later, if an application asks for the values of the key’s various attributes,
Cryptoki supplies values only for attributes whose values it can obtain (i.e., if Cryptoki is
asked for the value of an attribute it cannot obtain, the request fails). Note that a
Cryptoki implementation may or may not be able and/or willing to supply various
attributes of RSA private keys which are not actually stored on the token. E.g., if a
particular token stores values only for the CKA PRIVATE EXPONENT,
CKA PRIME 1, and CKA PRIME 2 attributes, then Cryptoki is certainly able to
report values for all the attributes above (since they can all be computed efficiently from
these three values). However, a Cryptoki implementation may or may not actually do
this extra computation. The only attributes from Table 36 for which a Cryptoki
implementation is required to be able to return values are CKA_MODULUS and
CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from Table 36 are
supplied to the object creation call than are supported by the token, the extra attributes
are likely to be thrown away. If an attempt is made to create an RSA private key object
on a token with insufficient attributes for that particular token, then the object creation
call fails and returns CKR_ TEMPLATE INCOMPLETE.

Note that when generating an RSA private key, there is no CKA_ MODULUS_BITS
attribute specified. This is because RSA private keys are only generated as part of an
RSA key pair, and the CKA_MODULUS_BITS attribute for the pair is specified in the
template for the RSA public key.

The following is a sample template for creating an RSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_RSA;

CK_UTF8CHAR | abel [] “An RSA private key object”;
CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};
CK_BYTE nodul us[] = {...};
CK_BYTE publ i cExponent [ ]
CK_BYTE pri vat eExponent [
CK BYTE prinel[] ={...};
CK_BYTE prinme2[] = {...}
CK_BYTE exponent 1 ]
CK_BYTE exponent 2[ ]
CK_BYTE coefficient][]
CK BBOOL true = CK TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA SUBJECT, subject, sizeof (subject)},

June 2004 Copyright © 2004 RSA Security Inc.



196 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{CKA ID, id, sizeof(id)},
{CKA SENSI Tl VE, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)},
{CKA SIGN, & rue, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nodul us)},
{ CKA_PUBLI C_EXPONENT, publicExponent,
si zeof (publ i cExponent) },
{ CKA_PRI VATE_EXPONENT, privat eExponent,
si zeof (pri vat eExponent) },
{CKA PRIME 1, prinel, sizeof(prinel)},
{CKA PRI MVE_2, prine2, sizeof(prine2)},
{ CKA_EXPONENT_1, exponentl, sizeof(exponentl)},
{ CKA_EXPONENT_2, exponent 2, sizeof (exponent?2)},
{ CKA_COEFFI Cl ENT, coefficient, sizeof(coefficient)}

b
12.1.4 PKCS #1 RSA key pair generation

The PKCS  #1 RSA  key  pair generation  mechanism,  denoted
CKM_RSA_PKCS _KEY_PAIR_GEN, is a key pair generation mechanism based on
the RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length
in bits and public exponent, as specified in the CKA MODULUS BITS and
CKA PUBLIC_EXPONENT attributes of the template for the public key. The
CKA PUBLIC_EXPONENT may be omitted in which case the mechanism shall
supply the public exponent attribute using the default value of 0x10001 (65537).
Specific implementations may use a random value or an alternative default if 0x10001
cannot be used by the token.

Note: Implementations strictly compliant with version 2.11 or prior versions may
generate an error if this attribute is omitted from the template. Experience has shown
that many implementations of 2.11 and prior did allow the
CKA_PUBLIC_EXPONENT attribute to be omitted from the template, and behaved
as described above. The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE,
CKA_MODULUS, and CKA_PUBLIC_EXPONENT attributes to the new public key.
CKA_PUBLIC_EXPONENT will be copied from the template if supplied.
CKR_TEMPLATE_INCONSISTENT shall be returned if the implementation cannot
use the supplied exponent value. It contributes the CKA CLASS and
CKA_KEY_TYPE attributes to the new private key; it may also contribute some of the
following  attributes to the new  private  key: CKA _MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE _EXPONENT, CKA_PRIME 1,
CKA_PRIME 2, CKA_EXPONENT 1, CKA_EXPONENT 2,
CKA_COEFFICIENT. Other attributes supported by the RSA public and private key
types (specifically, the flags indicating which functions the keys support) may also be
specified in the templates for the keys, or else are assigned default initial values.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 197

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.5 X9.31 RSA key pair generation

The X9.31 RSA key pair generation mechanism, denoted
CKM_RSA X9 31 KEY_PAIR_GEN, is a key pair generation mechanism based on
the RSA public-key cryptosystem, as defined in X9.31.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length
in bits and public exponent, as specified in the CKA_MODULUS_BITS and
CKA_PUBLIC_EXPONENT attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS,
and CKA_PUBLIC_EXPONENT attributes to the new public key. It contributes the
CKA_CLASS and CKA_KEY_TYPE attributes to the new private key; it may also
contribute some of the following attributes to the new private key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE _EXPONENT, CKA_ PRIME 1,
CKA_PRIME 2, CKA_EXPONENT 1, CKA_EXPONENT 2,
CKA_COEFFICIENT. Other attributes supported by the RSA public and private key
types (specifically, the flags indicating which functions the keys support) may also be
specified in the templates for the keys, or else are assigned default initial values. Unlike
the CKM_RSA PKCS_KEY_PAIR_GEN mechanism, this mechanism is guaranteed to
generate p and ¢ values, CKA_PRIME _1 and CKA_PRIME_2 respectively, that meet
the strong primes requirement of X9.31.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.6 PKCS #1 v1.5 RSA

The PKCS #1 v1.5 RSA mechanism, denoted CKM_RSA PKCS, is a multi-purpose
mechanism based on the RSA public-key cryptosystem and the block formats initially
defined in PKCS #1 v1.5. It supports single-part encryption and decryption; single-part
signatures and verification with and without message recovery; key wrapping; and key
unwrapping. This mechanism corresponds only to the part of PKCS #1 v1.5 that
involves RSA; it does not compute a message digest or a DigestInfo encoding as
specified for the nd2w t hRSAEncryption and nd5w t hRSAEncrypti on
algorithms in PKCS #1 v1.5 .

This mechanism does not have a parameter.

June 2004 Copyright © 2004 RSA Security Inc.



198 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type or any other information about the key, except the
key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the
key has it) attributes to the recovered key during unwrapping; other attributes must be
specified in the template.

Constraints on key types and the length of the data are summarized in the following table.
For encryption, decryption, signatures and signature verification, the input and output
data may begin at the same location in memory. In the table, £ is the length in bytes of
the RSA modulus.

Table 37, PKCS #1 v1.5 RSA: Key And Data Length

Function Key type Input Output Comments
length length

C_Encrypt' RSA public key <k-11 k block type 02
C Decrypt' RSA private key k <k-11 block type 02
C_Sign' RSA private key <k-11 k block type 01
C_SignRecover RSA private key <k-11 k block type 01
C Verify' RSA publickey | <k-11, 4 N/A block type 01
C_VerifyRecover | RSA public key k <k-11 block type 01
C_WrapKey RSA public key <k-11 k block type 02
C_UnwrapKey RSA private key k <k-11 block type 02

" Single-part operations only.

? Data length, signature length.

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the

CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.7 PKCS #1 RSA OAEP mechanism parameters

¢ CK RSA_PKCS MGF_TYPE; CK_RSA_PKCS_ MGF_TYPE_PTR

CK_RSA _PKCS_MGF _TYPE is used to indicate the Message Generation Function
(MGF) applied to a message block when formatting a message block for the PKCS #1
OAEP encryption scheme or the PKCS #1 PSS signature scheme. It is defined as follows:

t ypedef CK ULONG CK_RSA PKCS MGF_TYPE;

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 199

The following MGFs are defined in PKCS #1. The following table lists the defined
functions.

Table 38, PKCS #1 Mask Generation Functions

Source Identifier Value

CKG _MGFI1_SHAI 0x00000001
CKG_MGF1 _SHA256 0x00000002
CKG _MGF1 SHA384 0x00000003
CKG_MGFI1 _SHAS12 0x00000004

CK_RSA_PKCS_MGF_TYPE_PTR is a pointer to a CK_RSA_PKCS_MGF_TYPE.

¢ CK RSA_PKCS OAEP SOURCE_TYPE;
CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR

CK_RSA _PKCS_OAEP_SOURCE _TYPE is used to indicate the source of the
encoding parameter when formatting a message block for the PKCS #1 OAEP encryption
scheme. It is defined as follows:

t ypedef CK_ULONG CK_RSA PKCS_OAEP_SOURCE_TYPE;
The following encoding parameter sources are defined in PKCS #1. The following table

lists the defined sources along with the corresponding data type for the pSourceData field
in the CK_RSA_PKCS_OAEP_PARAMS structure defined below.

Table 39, PKCS #1 RSA OAEP: Encoding parameter sources

Source Identifier Value Data Type

CKZ DATA_SPECIFIED | 0x00000001 | Array of CK _BYTE containing the value
of the encoding parameter. If the parameter
is empty, pSourceData must be NULL and
ulSourceDataLen must be zero.

CK_RSA_PKCS_OAEP_SOURCE_TYPE_PTR is a pointer to a
CK_RSA_PKCS_OAEP_SOURCE_TYPE.

June 2004 Copyright © 2004 RSA Security Inc.



200 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK RSA_PKCS OAEP PARAMS; CK_RSA PKCS OAEP PARAMS PTR

CK_RSA_PKCS_OAEP_PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_OAEP mechanism. The structure is defined as follows:

typedef struct CK_RSA PKCS QAEP_PARAMS {
CK_MECHANI SM TYPE hashAl g;
CK_RSA PKCS_MGF_TYPE nyf ;
CK_RSA PKCS OAEP_SOURCE_TYPE source;
CK VA D_PTR pSour ceDat a;
CK_ULONG ul Sour ceDat aLen;

} CK_RSA PKCS_QAEP_PARAMS;

The fields of the structure have the following meanings:

hashAlg ~ mechanism ID of the message digest algorithm used to
calculate the digest of the encoding parameter

mgf  mask generation function to use on the encoded block
source  source of the encoding parameter

pSourceData  data used as the input for the encoding parameter
source

ulSourceDataLen length of the encoding parameter source input

CK_RSA_PKCS_OAEP_PARAMS PTR is a pointer to a
CK_RSA_PKCS_OAEP_PARAMS.

12.1.8 PKCS #1 RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM_RSA_PKCS_OAEP, is a multi-
purpose mechanism based on the RSA public-key cryptosystem and the OAEP block
format defined in PKCS #1. It supports single-part encryption and decryption; key
wrapping; and key unwrapping.

It has a parameter, a CK_RSA_PKCS_OAEP_PARAMS structure.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA_VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type or any other information about the key, except the
key length; the application must convey these separately. In particular, the mechanism
contributes only the CKA_CLASS and CKA_VALUE (and CKA_VALUE_LEN, if the

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 201

key has it) attributes to the recovered key during unwrapping; other attributes must be
specified in the template.

Constraints on key types and the length of the data are summarized in the following table.
For encryption and decryption, the input and output data may begin at the same location
in memory. In the table, £ is the length in bytes of the RSA modulus, and /Len is the
output length of the message digest algorithm specified by the hashAlg field of the
CK_RSA_PKCS_OAEP_PARAMS structure.

Table 40, PKCS #1 RSA OAEP: Key And Data Length

Function Key type Input Output
length length

C_Encrypt' RSA public key | < k-2-2hLen k

C_Decrypt' RSA private key k < k-2-2hLen

C_WrapKey RSA public key | < k-2-2hLen k

C UnwrapKey RSA private key k < k-2-2hLen

' Single-part operations only.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.9 PKCS #1 RSA PSS mechanism parameters

¢ CK RSA_PKCS PSS PARAMS; CK_RSA PKCS PSS PARAMS PTR

CK_RSA_PKCS_PSS PARAMS is a structure that provides the parameters to the
CKM_RSA_PKCS_PSS mechanism. The structure is defined as follows:

typedef struct CK_RSA PKCS PSS PARAMS ({
CK_MECHANI SM TYPE hashAl g;
CK_RSA PKCS_MGF_TYPE nyf ;
CK_ULONG sLen;

} CK_RSA PKCS PSS PARANS;

The fields of the structure have the following meanings:

hashAlg  hash algorithm used in the PSS encoding; if the
signature mechanism does not include message
hashing, then this value must be the mechanism used
by the application to generate the message hash; if the
signature mechanism includes hashing, then this value

June 2004 Copyright © 2004 RSA Security Inc.



202 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

must match the hash algorithm indicated by the
signature mechanism

mgf  mask generation function to use on the encoded block

sLen length, in bytes, of the salt value used in the PSS
encoding; typical values are the length of the message
hash and zero

CK_RSA_PKCS_PSS PARAMS PTR is a pointer to a
CK_RSA_PKCS PSS PARAMS.

12.1.10 PKCS #1 RSA PSS

The PKCS #1 RSA PSS mechanism, denoted CKM_RSA_PKCS_PSS, is a mechanism
based on the RSA public-key cryptosystem and the PSS block format defined in PKCS
#1. It supports single-part signature generation and verification without message
recovery. This mechanism corresponds only to the part of PKCS #1 that involves block
formatting and RSA, given a hash value; it does not compute a hash value on the message
to be signed.

It has a parameter, a CK_RSA_PKCS_PSS_PARAMS structure. The sLen field must be
less than or equal to k*-2-hLen and hLen is the length of the input to the C_Sign or
C_Verify function. £* is the length in bytes of the RSA modulus, except if the length in
bits of the RSA modulus is one more than a multiple of 8, in which case k* is one less
than the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table.
In the table, £ is the length in bytes of the RSA.

Table 41, PKCS #1 RSA PSS: Key And Data Length

Function Key type Input Output
length length

C_Sign' RSA private key hLen k

C_Verify' RSA public key hLen, k N/A

" Single-part operations only.
? Data length, signature length.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes,
in bits.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 203

12.1.11 ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM_RSA_ 9796, is a mechanism for
single-part signatures and verification with and without message recovery based on the
RSA public-key cryptosystem and the block formats defined in ISO/IEC 9796 and its
annex A.

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit
strings. Accordingly, the following transformations are performed:

e Data is converted between byte and bit string formats by interpreting the most-
significant bit of the leading byte of the byte string as the leftmost bit of the bit string,
and the least-significant bit of the trailing byte of the byte string as the rightmost bit
of the bit string (this assumes the length in bits of the data is a multiple of 8).

* A signature is converted from a bit string to a byte string by padding the bit string on
the left with 0 to 7 zero bits so that the resulting length in bits is a multiple of 8, and
converting the resulting bit string as above; it is converted from a byte string to a bit
string by converting the byte string as above, and removing bits from the left so that
the resulting length in bits is the same as that of the RSA modulus.

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. In the table, £ is the length in bytes of the RSA modulus.

Table 42, ISO/IEC 9796 RSA: Key And Data Length

Function Key type Input Output
length length

C Sign' RSA private key < k2] k

C_SignRecover RSA private key < k2] k

C Verify' RSA publickey | <li2] ¥ N/A

C_VerifyRecover | RSA public key k <| k2]

" Single-part operations only.
? Data length, signature length.

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.12 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA_X 509, is a multi-purpose
mechanism based on the RSA public-key cryptosystem. It supports single-part encryption

June 2004 Copyright © 2004 RSA Security Inc.



204 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

and decryption; single-part signatures and verification with and without message
recovery; key wrapping; and key unwrapping. All these operations are based on so-
called “raw” RSA, as assumed in X.509.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-
significant byte first, applying “raw” RSA exponentiation, and converting the result to a
byte string, most-significant byte first. The input string, considered as an integer, must
be less than the modulus; the output string is also less than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that
it supports. For wrapping, the “input” to the encryption operation is the value of the
CKA VALUE attribute of the key that is wrapped; similarly for unwrapping. The
mechanism does not wrap the key type, key length, or any other information about the
key; the application must convey these separately, and supply them when unwrapping the
key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For
this mechanism, padding should be performed by prepending plaintext data with 0-valued
bytes. In effect, to encrypt the sequence of plaintext bytes by b, ... b, (n < k), Cryptoki
forms P=2""'b,;42"?b,+...+b,. This number must be less than the RSA modulus. The k-
byte ciphertext (k is the length in bytes of the RSA modulus) is produced by raising P to
the RSA public exponent modulo the RSA modulus. Decryption of a k-byte ciphertext C
is accomplished by raising C to the RSA private exponent modulo the RSA modulus, and
returning the resulting value as a sequence of exactly k bytes. If the resulting plaintext is
to be used to produce an unwrapped key, then however many bytes are specified in the
template for the length of the key are taken from the end of this sequence of bytes.

Technically, the above procedures may differ very slightly from certain details of what is
specified in X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR DATA INVALID (if plaintext is supplied which has the same length as the RSA
modulus and is numerically at least as large as the modulus) and
CKR _ENCRYPTED DATA INVALID (if ciphertext is supplied which has the same
length as the RSA modulus and is numerically at least as large as the modulus).

Constraints on key types and the length of input and output data are summarized in the
following table. In the table, & is the length in bytes of the RSA modulus.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 205

Table 43, X.509 (Raw) RSA: Key And Data Length

Function Key type Input Output length
length

C_Encrypt’ RSA public key <k k

C Decrypt' RSA private key k k

C_Sign' RSA private key <k k

C_SignRecover RSA private key <k k

C_Verify' RSA publickey | <k, & N/A

C_VerifyRecover | RSA public key k k

C_WrapKey RSA public key <k k

C_UnwrapKey RSA private key k < k (specified in template)

' Single-part operations only.
? Data length, signature length.

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

This mechanism is intended for compatibility with applications that do not follow the
PKCS #1 or ISO/IEC 9796 block formats.

12.1.13 ANSI X9.31 RSA

The ANSI X9.31 RSA mechanism, denoted CKM_RSA X9 31, is a mechanism for
single-part signatures and verification without message recovery based on the RSA
public-key cryptosystem and the block formats defined in ANSI X9.31.

This mechanism applies the header and padding fields of the hash encapsulation. The
trailer field must be applied by the application.

This mechanism processes only byte strings, whereas ANSI X9.31 operates on bit strings.
Accordingly, the following transformations are performed:

e Data is converted between byte and bit string formats by interpreting the most-
significant bit of the leading byte of the byte string as the leftmost bit of the bit string,
and the least-significant bit of the trailing byte of the byte string as the rightmost bit
of the bit string (this assumes the length in bits of the data is a multiple of 8).

* A signature is converted from a bit string to a byte string by padding the bit string on
the left with 0 to 7 zero bits so that the resulting length in bits is a multiple of §, and
converting the resulting bit string as above; it is converted from a byte string to a bit
string by converting the byte string as above, and removing bits from the left so that
the resulting length in bits is the same as that of the RSA modulus.

June 2004 Copyright © 2004 RSA Security Inc.



206 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

This mechanism does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table. In the table, £ is the length in bytes of the RSA modulus. For all
operations, the k value must be at least 128 and a multiple of 32 as specified in ANSI
X9.31.

Table 44, ANSI X9.31 RSA: Key And Data Length

Function Key type Input Output
length length

C_Sign' RSA private key <k-2 k

C Verify' RSA publickey | <k-2, K N/A

" Single-part operations only.
? Data length, signature length.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.14 PKCS #1 v1.5 RSA signature with MD2, MD5, SHA-1, SHA-256,
SHA-384, SHA-512, RIPE-MD 128 or RIPE-MD 160

The PKCS #1 v1.5 RSA signature with MD2 mechanism, denoted
CKM_MD2 RSA PKCS, performs single- and multiple-part digital signatures and
verification operations without message recovery. The operations performed are as
described initially in PKCS #1 v1.5 with the object identifier md2WithRSAEncryption,
and as in the scheme RSASSA-PKCS1-vl 5 in the current version of PKCS #1, where
the underlying hash function is MD?2.

Similarly, the PKCS #1 vI1.5 RSA signature with MDS5 mechanism, denoted
CKM_MDS5_RSA_PKCS, performs the same operations described in PKCS #1 with the
object identifier md5WithRSAEncryption. The PKCS #1 v1.5 RSA signature with SHA-
1 mechanism, denoted CKM_SHA1_RSA_PKCS, performs the same operations, except
that it uses the hash function SHA-1 with object identifier shal WithRSAEncryption.

Likewise, the PKCS #1 v1.5 RSA signature with SHA-256, SHA-384, and SHA-512
mechanisms, denoted CKM_SHA256 RSA PKCS, CKM_SHA384 RSA PKCS, and
CKM_SHAS12 RSA_ PKCS respectively, perform the same operations using the SHA-
256, SHA-384 and SHA-512 hash functions with the object identifiers
sha256WithRSAEncryption, sha384WithRSAEncryption and
sha384WithRSAEncryption respectively.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 207

The PKCS #1 v1.5 RSA signature with RIPEMD-128 or RIPEMD-160, denoted
CKM_RIPEMD128 RSA PKCS and CKM_RIPEMD160_RSA_PKCS respectively,
perform the same operations using the RIPE-MD 128 and RIPE-MD 160 hash functions.

None of these mechanisms has a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized
in the following table. In the table, £ is the length in bytes of the RSA modulus. For the
PKCS #1 v1.5 RSA signature with MD2 and PKCS #1 v1.5 RSA signature with MD5
mechanisms, k& must be at least 27; for the PKCS #1 v1.5 RSA signature with SHA-1
mechanism, & must be at least 31, and so on for other underlying hash functions, where
the minimum is always 11 bytes more than the length of the hash value.

Table 45, PKCS #1 v1.5 RSA Signatures with Various Hash Functions: Key And
Data Length

Function Key type Input Output Comments
length length
C Sign RSA private key any k block type
01
C Verify RSA public key any, k* N/A block type
01

* Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.15 PKCS #1 RSA PSS signature with SHA-1, SHA-256, SHA-384 or
SHA-512

The PKCS #1 RSA PSS signature with SHA-1 mechanism, denoted
CKM_SHA1_RSA_PKCS_PSS, performs single- and multiple-part digital signatures
and verification operations without message recovery. The operations performed are as
described in PKCS #1 with the object identifier id-RSASSA-PSS, i.e., as in the scheme
RSASSA-PSS in PKCS #1 where the underlying hash function is SHA-1.

The PKCS #1 RSA PSS signature with SHA-256, SHA-384, and SHA-512 mechanisms,
denoted CKM_SHA256 RSA_PKCS_PSS, CKM_SHA384 RSA_PKCS PSS, and
CKM_SHA512_RSA_PKCS_PSS respectively, perform the same operations using the
SHA-256, SHA-384 and SHA-512 hash functions.

The mechanisms have a parameter, a CK_RSA_PKCS PSS PARAMS structure. The
sLen field must be less than or equal to k*-2-hLen where hlen is the length in bytes of
the hash value. £* is the length in bytes of the RSA modulus, except if the length in bits

June 2004 Copyright © 2004 RSA Security Inc.



208 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

of the RSA modulus is one more than a multiple of 8, in which case £* is one less than
the length in bytes of the RSA modulus.

Constraints on key types and the length of the data are summarized in the following table.
In the table, £ is the length in bytes of the RSA modulus.

Table 46, PKCS #1 RSA PSS Signatures with Various Hash Functions: Key And
Data Length

Function Key type Input Output
length length

C Sign RSA private key any k

C_Verify RSA public key any, k* N/A

? Data length, signature length.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

12.1.16 ANSI X9.31 RSA signature with SHA-1

The ANSI X931 RSA signature with SHA-1  mechanism, denoted
CKM_SHA1 RSA X9 31, performs single- and multiple-part digital signatures and

verification operations without message recovery. The operations performed are as
described in ANSI X9.31.

This mechanism does not have a parameter.

Constraints on key types and the length of the data for these mechanisms are summarized
in the following table. In the table, & is the length in bytes of the RSA modulus. For all
operations, the k value must be at least 128 and a multiple of 32 as specified in ANSI
X9.31.

Table 47, ANSI X9.31 RSA Signatures with SHA-1: Key And Data Length

Function Key type Input Output
length length

C Sign RSA private key any k

C_Verify RSA public key any, k* N/A

? Data length, signature length.

For these mechanisms, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RSA modulus sizes,
in bits.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 209

12.2 DSA

12.2.1 Definitions

This section defines the key type “CKK_DSA” for type CK_KEY TYPE as used in the
CKA KEY_TYPE attribute of DSA key objects.

Mechanisms:

CKM DSA_KEY_PAI R_GEN
CKM_DSA

CKM DSA SHA1
CKM_DSA_PARAMETER GEN
CKM_FORTEZZA_TI MESTAMVP

12.2.2 DSA public key objects
DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hold

DSA public keys. The following table defines the DSA public key object attributes, in
addition to the common attributes defined for this object class:

Table 48, DSA Public Key Object Attributes

Attribute Data type | Meaning

CKA_PRIME'’ Big integer | Prime p (512 to 1024 bits, in steps of 64 bits)
CKA SUBPRIME'? Big integer | Subprime g (160 bits)

CKA BASE'? Big integer | Base g

CKA VALUE' Big integer | Public value y

“Refer to table Table 15 for footnotes

The CKA_PRIME, CKA SUBPRIME and CKA_ BASE attribute values are
collectively the “DSA domain parameters”. See FIPS PUB 186-2 for more information
on DSA keys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT_CLASS cl ass = CKO PUBLI C KEY;
CK_KEY_TYPE keyType = CKK_DSA;
CK_UTF8CHAR | abel [] = “A DSA public key object”;
CK_ BYTE prime[] = {...};
CK_BYTE subprine[] = {...};
CK_BYTE base[] = {...};
CK _BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},

June 2004 Copyright © 2004 RSA Security Inc.



210 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{CKA PRI VE, prinme, sizeof(prine)},

{ CKA_SUBPRI ME, subprine, sizeof (subprine)},
{ CKA BASE, base, sizeof(base)},

{CKA VALUE, val ue, sizeof(value)}

b
12.2.3 DSA private key objects

DSA private key objects (object class CKO_PRIVATE KEY, key type CKK_DSA)
hold DSA private keys. The following table defines the DSA private key object
attributes, in addition to the common attributes defined for this object class:

Table 49, DSA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME'"** Big integer | Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME'*® | Big integer | Subprime ¢ (160 bits)

CKA BASE'** Big integer | Base g

CKA VALUE'**’ Big integer | Private value x

“Refer to table Table 15 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “DSA domain parameters”. See FIPS PUB 186-2 for more information
on DSA keys.

Note that when generating a DSA private key, the DSA domain parameters are not
specified in the key’s template. This is because DSA private keys are only generated as
part of a DSA key pair, and the DSA domain parameters for the pair are specified in the
template for the DSA public key.

The following is a sample template for creating a DSA private key object:

CK_OBJECT_CLASS cl ass = CKO PRI VATE KEY

CK_KEY_TYPE keyType CKK_DSA;

CK_UTF8CHAR | abel [] “A DSA private key object”;

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK BYTE prinme[] = {...};

CK_BYTE subprine[] ={...};

CK_BYTE base[] = {...};

CK_BYTE value[] = {...};

CK BBOOL true = CK_TRUE;

CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 211

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},

{CKA_SENSI Tl VE, &true, sizeof(true)},
{CKA SIGN, &true, sizeof(true)},

{CKA PRI VE, prinme, sizeof(prime)},

{ CKA_SUBPRI ME, subprine, sizeof (subprine)},
{ CKA BASE, base, sizeof(base)},

{CKA VALUE, val ue, sizeof(value)}

b
12.2.4 DSA domain parameter objects

DSA domain parameter objects (object class CKO_DOMAIN _PARAMETERS, key
type CKK_DSA) hold DSA domain parameters. The following table defines the DSA
domain parameter object attributes, in addition to the common attributes defined for this
object class:

Table 50, DSA Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME'* Big integer Prime p (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME'* Big integer Subprime ¢ (160 bits)

CKA BASE" Big integer Base g

CKA_PRIME BITS> | CK_ULONG | Length of the prime value.

“Refer to table Table 15 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “DSA domain parameters”. See FIPS PUB 186-2 for more information
on DSA domain parameters.

The following is a sample template for creating a DSA domain parameter object:

CK_OBJECT_CLASS cl ass = CKO _DOVAI N_PARAMETERS;
CK_KEY_TYPE keyType = CKK _DSA;
CK_UTF8CHAR | abel [] “A DSA domai n paraneter object”;
CK_BYTE prine[] = {...};
CK_BYTE subprinme[] ={...};
CK _BYTE base[] ={...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA_LABEL, | abel, sizeof (Il abel)-1},
CKA PRIMVE, prinme, sizeof(prine)},
CKA SUBPRI ME, subprine, sizeof (subprine)},

June 2004 Copyright © 2004 RSA Security Inc.



212 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{ CKA_BASE, base, sizeof (base)},
b

12.2.5 DSA key pair generation

The DSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, is a
key pair generation mechanism based on the Digital Signature Algorithm defined in FIPS
PUB 186-2.

This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime
and base, as specified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE
attributes of the template for the public key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA _KEY_TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the DSA public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified
in the templates for the keys, or else are assigned default initial values.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in
bits.

12.2.6 DSA domain parameter generation

The DSA domain parameter generation mechanism, denoted
CKM_DSA_PARAMETER_GEN, is a domain parameter generation mechanism based
on the Digital Signature Algorithm defined in FIPS PUB 186-2.

This mechanism does not have a parameter.

The mechanism generates DSA domain parameters with a particular prime length in bits,
as specified in the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME,
CKA_SUBPRIME, CKA_BASE and CKA_PRIME_BITS attributes to the new object.
Other attributes supported by the DSA domain parameter types may also be specified in
the template, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 213

12.2.7 DSA without hashing

The DSA without hashing mechanism, denoted CKM_DSA, is a mechanism for single-
part signatures and verification based on the Digital Signature Algorithm defined in FIPS
PUB 186-2. (This mechanism corresponds only to the part of DSA that processes the 20-
byte hash value; it does not compute the hash value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding
to the concatenation of the DSA values r and s, each represented most-significant byte
first.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 51, DSA: Key And Data Length

Function Key type Input Output
length length

C_Sign' DSA private key 20 40

C Verify' DSA public key 20, 40° N/A

! Single-part operations only.
? Data length, signature length.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in
bits.

12.2.8 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA SHAI1, is a mechanism for
single- and multiple-part signatures and verification based on the Digital Signature
Algorithm defined in FIPS PUB 186-2. This mechanism computes the entire DSA
specification, including the hashing with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding
to the concatenation of the DSA values r and s, each represented most-significant byte
first.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

June 2004 Copyright © 2004 RSA Security Inc.



214 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 52, DSA with SHA-1: Key And Data Length

Function Key type Input Output
length length

C_Sign DSA private key any 40

C_Verity DSA public key any, 40° N/A

* Data length, signature length.

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of DSA prime sizes, in
bits.

12.2.9 FORTEZZA timestamp

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA_TIMESTAMP,
is a mechanism for single-part signatures and verification. The signatures it produces and
verifies are DSA digital signatures over the provided hash value and the current time.

It has no parameters.

Constraints on key types and the length of data are summarized in the following table.
The input and output data may begin at the same location in memory.

Table 53, FORTEZZA Timestamp: Key And Data Length

Function Key type Input Output
length length

C_Sign' DSA private key 20 40

C_Verify' DSA public key 20, 40° N/A

" Single-part operations only.
? Data length, signature length.

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of DSA prime sizes, in
bits.

12.3  Elliptic Curve

The Elliptic Curve (EC) cryptosystem (also related to ECDSA) in this document is the
one described in the ANSI X9.62 and X9.63 standards developed by the ANSI X9F1
working group.

Table 54, Mechanism Information Flags

CKF EC F P 0x00100000 | True if the mechanism can be used

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 215

with EC domain parameters over F),

CKF EC F 2M 0x00200000 | True if the mechanism can be used
with EC domain parameters over
Fzm

CKF _EC ECPARAMETERS 0x00400000 | True if the mechanism can be used
with EC domain parameters of the
choice ecParameters

CKF _EC NAMEDCURVE 0x00800000 | True if the mechanism can be used
with EC domain parameters of the
choice namedCurve

CKF _EC UNCOMPRESS 0x01000000 | True if the mechanism can be used
with elliptic curve point
uncompressed

CKF_EC _COMPRESS 0x02000000 | True if the mechanism can be used

with elliptic curve point compressed

In these standards, there are two different varieties of EC defined:
1. EC using a field with an odd prime number of elements (i.e. the finite field ).
2. EC using a field of characteristic two (i.e. the finite field Fom).

An EC key in Cryptoki contains information about which variety of EC it is suited for. It
is preferable that a Cryptoki library, which can perform EC mechanisms, be capable of
performing operations with the two varieties of EC, however this is not required. The
CK_MECHANISM_INFO structure CKF_EC_F_P flag identifies a Cryptoki library
supporting EC keys over F), whereas the CKF_EC_F_2M flag identifies a Cryptoki
library supporting EC keys over Fom. A Cryptoki library that can perform EC
mechanisms must set either or both of these flags for each EC mechanism.

In these specifications there are also three representation methods to define the domain
parameters for an EC key. Only the ecParameters and the namedCurve choices are
supported n Cryptoki. The CK_MECHANISM_INFO structure
CKF_EC_ECPARAMETERS flag identifies a Cryptoki library supporting the
ecParameters choice whereas the CKF_EC_NAMEDCURVE flag identifies a
Cryptoki library supporting the namedCurve choice. A Cryptoki library that can
perform EC mechanisms must set either or both of these flags for each EC mechanism.

In these specifications, an EC public key (i.e. EC point Q) or the base point G when the
ecParameters choice is used can be represented as an octet string of the uncompressed
form or the compressed form. The CK MECHANISM _INFO structure
CKF_EC UNCOMPRESS flag identifies a Cryptoki library supporting the
uncompressed form whereas the CKF_EC_COMPRESS flag identifies a Cryptoki
library supporting the compressed form. A Cryptoki library that can perform EC
mechanisms must set either or both of these flags for each EC mechanism.

June 2004 Copyright © 2004 RSA Security Inc.



216 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Note that an implementation of a Cryptoki library supporting EC with only one variety,
one representation of domain parameters or one form may encounter difficulties
achieving interoperability with other implementations.

If an attempt to create, generate, derive, or unwrap an EC key of an unsupported variety
(or of an unsupported size of a supported variety) is made, that attempt should fail with
the error code CKR_ TEMPLATE INCONSISTENT. If an attempt to create, generate,
derive, or unwrap an EC key with invalid or of an unsupported representation of domain
parameters is made, that attempt should fail with the error code
CKR DOMAIN PARAMS INVALID. If an attempt to create, generate, derive, or
unwrap an EC key of an unsupported form is made, that attempt should fail with the error
code CKR_TEMPLATE INCONSISTENT.

12.3.1 EC Signatures

For the purposes of these mechanisms, an ECDSA signature is an octet string of even
length which is at most two times nlen octets, where nlLen is the length in octets of the
base point order n. The signature octets correspond to the concatenation of the ECDSA
values r and s, both represented as an octet string of equal length of at most nLen with the
most significant byte first. If » and s have different octet length, the shorter of both must
be padded with leading zero octets such that both have the same octet length. Loosely
spoken, the first half of the signature is » and the second half is s. For signatures created
by a token, the resulting signature is always of length 2nLen. For signatures passed to a
token for verification, the signature may have a shorter length but must be composed as
specified before.

If the length of the hash value is larger than the bit length of n, only the leftmost bits of
the hash up to the length of n will be used.

Note: For applications, it is recommended to encode the signature as an octet string of
length two times nLen if possible. This ensures that the application works with PKCS#11
modules which have been implemented based on an older version of this document.
Older versions required all signatures to have length two times nLen. It may be
impossible to encode the signature with the maximum length of two times nLen if the
application just gets the integer values of » and s (i.e. without leading zeros), but does not
know the base point order n, because r and s can have any value between zero and the
base point order 7.

12.3.2 Definitions

This section defines the key type “CKK ECDSA” and “CKK EC” for type
CK KEY TYPE asused in the CKA KEY TYPE attribute of key objects.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 217

Mechanisms:

Not e: CKM ECDSA KEY PAIR GEN is deprecated in v2.11
CKM _ECDSA KEY_PAI R_GEN

CKM_EC KEY_PAI R_GEN

CKM_ECDSA

CKM _ECDSA SHA1

CKM_ECDH1_DERI VE

CKM_ECDH1_COFACTOR_DERI VE

CKM_ECMQV_DERI VE

12.3.3 ECDSA public key objects

EC (also related to ECDSA) public key objects (object class CKO_PUBLIC_KEY, key
type CKK_EC or CKK_ECDSA) hold EC public keys. The following table defines the
EC public key object attributes, in addition to the common attributes defined for this
object class:

Table S5, Elliptic Curve Public Key Object Attributes

Attribute Data type | Meaning

CKA_EC_PARAMS'? Byte array | DER-encoding of an ANSI X9.62

(CKA_ECDSA PARAMS) Par anmet er s value

CKA _EC POINT' Byte array | DER-encoding of ANSI X9.62
ECPoi nt value Q

“Refer to table Table 15 for footnotes

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the
“EC domain parameters” and is defined in ANSI X9.62 as a choice of three parameter
representation methods with the following syntax:

Paraneters ::= CHO CE {
ecPar aneters ECPar anet er s,
namedCur ve CURVES. & d({CurveNanes}),

inplicitlyCA  NULL
}

This allows detailed specification of all required values using choice ecParameters, the
use of a namedCurve as an object identifier substitute for a particular set of elliptic
curve domain parameters, or implicitlyCA to indicate that the domain parameters are
explicitly defined elsewhere. The use of a namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

The following is a sample template for creating an EC (ECDSA) public key object:
CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;

June 2004 Copyright © 2004 RSA Security Inc.



218 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_KEY_TYPE keyType = CKK_EC,
CK_UTF8CHAR | abel [] = “An EC public key object”;
CK_BYTE ecParans[] = {...
CK_BYTE ecPoint[] = {...}
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{CKA_EC PARAMS, ecParans, sizeof(ecParans)},

{CKA _EC PO NT, ecPoint, sizeof(ecPoint)}

3
12.3.4 Elliptic curve private key objects

EC (also related to ECDSA) private key objects (object class CKO_PRIVATE_KEY,
key type CKK_EC or CKK_ECDSA) hold EC private keys. See Section 12.3 for more
information about EC. The following table defines the EC private key object attributes,
in addition to the common attributes defined for this object class:

Table 56, Elliptic Curve Private Key Object Attributes

Attribute Data type | Meaning

CKA EC PARAMS'*° Byte array | DER-encoding of an ANSI X9.62
(CKA_ECDSA PARAMYS) Par anmet er s value

CKA_ VALUE'*®7 Big integer | ANSI X9.62 private value d

“Refer to table Table 15 for footnotes

The CKA_EC_PARAMS or CKA_ECDSA_PARAMS attribute value is known as the
“EC domain parameters” and is defined in ANSI X9.62 as a choice of three parameter
representation methods with the following syntax:

Paraneters ::= CHO CE {
ecParaneters ECPar anet er s,
namedCur ve CURVES. & d({CurveNanes}),

inmplicitlyCA  NULL
}

This allows detailed specification of all required values using choice ecParameters, the
use of a namedCurve as an object identifier substitute for a particular set of elliptic
curve domain parameters, or implicitlyCA to indicate that the domain parameters are
explicitly defined elsewhere. The use of a namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Note that when generating an EC private key, the EC domain parameters are not
specified in the key’s template. This is because EC private keys are only generated as

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 219

part of an EC key pair, and the EC domain parameters for the pair are specified in the
template for the EC public key.

The following is a sample template for creating an EC (ECDSA) private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType CKK_EC;

CK_UTF8CHAR | abel [] “An EC private key object”;
CK_BYTE subject[] ={...};

CK_BYTE id[] = {123};

CK_BYTE ecParans[] = {...};

CK_BYTE value[] = {...};

CK BBOOL true = CK_ TRUE

CK_ATTRI BUTE terrpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},

CKA SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI Tl VE, &true, sizeof(true)},
{CKA DERI VE, &true, sizeof(true)},
{CKA_EC PARAMS, ecParans, sizeof(ecParans)},
{CKA_VALUE, val ue, sizeof (value)}

i
12.3.5 Elliptic curve key pair generation

The EC (also related to ECDSA) key pair generation mechanism, denoted
CKM_EC_KEY_PAIR GEN or CKM_ECDSA _KEY PAIR GEN, is a key pair
generation mechanism for EC.

This mechanism does not have a parameter.

The mechanism generates EC public/private key pairs with particular EC domain
parameters, as specified in the CKA_EC_PARAMS or CKA ECDSA PARAMS
attribute of the template for the public key. Note that this version of Cryptoki does not
include a mechanism for generating these EC domain parameters.

The mechanism contributes the CKA CLASS, CKA KEY TYPE, and
CKA _EC POINT attributes to the new public key and the CKA_ CLASS,
CKA KEY _TYPE, CKA EC PARAMS or CKA ECDSA PARAMS and
CKA CKA VALUE attributes to the new private key. Other attributes supported by
the EC public and private key types (specifically, the flags indicating which functions the
keys support) may also be specified in the templates for the keys, or else are assigned
default initial values.

June 2004 Copyright © 2004 RSA Security Inc.



220 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2°*° and 2°” elements,
then u/MinKeySize = 201 and u/MaxKeySize = 301 (when written in binary notation, the
number 2% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°” is a 301-bit number).

12.3.6 ECDSA without hashing

Refer section 12.3.1 for signature encoding.

The ECDSA without hashing mechanism, denoted CKM_ECDSA, is a mechanism for
single-part signatures and verification for ECDSA. (This mechanism corresponds only to
the part of ECDSA that processes the hash value, which should not be longer than 1024
bits; it does not compute the hash value.)

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 57, ECDSA: Key And Data Length

Function Key type Input length Output
length
C_Sign' ECDSA private any’ 2nlLen
key
C Verify' ECDSA public key | any’, <2nLen * N/A

' Single-part operations only.
? Data length, signature length.
3 Truncated to the appropriate number of bits.

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2** and 2°* elements
(inclusive), then u/MinKeySize = 201 and ulMaxKeySize = 301 (when written in binary
notation, the number 2°° consists of a 1 bit followed by 200 0 bits. It is therefore a 201-
bit number. Similarly, 2°* is a 301-bit number).

12.3.7 ECDSA with SHA-1

Refer section 12.3.1 for signature encoding.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 221

The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA_SHAL, is a mechanism
for single- and multiple-part signatures and verification for ECDSA. This mechanism
computes the entire ECDSA specification, including the hashing with SHA-1.

This mechanism does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 58, ECDSA with SHA-1: Key And Data Length

Function | Key type Input length Output
length

C_Sign ECDSA private key any 2nlLen

C_Verify | ECDSA public key | any, S22nLen N/A

? Data length, signature length.

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only ECDSA using a field of characteristic 2 which has between 2°*° and 2°” elements,
then ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the
number 2*% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°* is a 301-bit number).

12.3.8 EC mechanism parameters

¢ CK_EC_KDF _TYPE, CK_EC_KDF TYPE_PTR

CK _EC_KDF _TYPE is used to indicate the Key Derivation Function (KDF) applied to
derive keying data from a shared secret. The key derivation function will be used by the
EC key agreement schemes. It is defined as follows:

t ypedef CK ULONG CK_EC KDF_TYPE;

The following table lists the defined functions.

Table 59, EC: Key Derivation Functions

Source Identifier Value
CKD NULL 0x00000001
CKD_SHA1 KDF 0x00000002

The key derivation function CKD_NULL produces a raw shared secret value without
applying any key derivation function whereas the key derivation function

June 2004 Copyright © 2004 RSA Security Inc.



222 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKD_SHAI1_KDF, which is based on SHA-1, derives keying data from the shared
secret value as defined in ANSI X9.63.

CK_EC_KDF _TYPE_PTR is a pointer to a CK_EC_KDF_TYPE.
¢ CK _ECDHI1_DERIVE_PARAMS, CK_ECDH1_DERIVE PARAMS PTR

CK_ECDH1_DERIVE PARAMS is a structure that provides the parameters for the
CKM_ECDH1_DERIVE and CKM_ECDH1_COFACTOR _DERIVE key derivation
mechanisms, where each party contributes one key pair. The structure is defined as
follows:

t ypedef struct CK ECDH1 DERI VE PARAMS {
CK_EC_KDF_TYPE kdf;
CK_ULONG ul Shar edDat aLen;
CK_BYTE_PTR pShar edDat a;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;

} CK_ECDH1_DERI VE_PARANS;

The fields of the structure have the following meanings:
kdf  key derivation function used on the shared secret value
ulSharedDataLen  the length in bytes of the shared info
pSharedData some data shared between the two parties
ulPublicDataLen the length in bytes of the other party’s EC public key
pPublicData  pointer to other party’s EC public key value

With the key derivation function CKD_NULL, pSharedData must be NULL and
ulSharedDataLen must be zero. With the key derivation function CKD_SHA1_KDF, an
optional pSharedData may be supplied, which consists of some data shared by the two
parties intending to share the shared secret. Otherwise, pSharedData must be NULL and
ulSharedDatalen must be zero.

CK_ECDH1_DERIVE PARAMS PTR is a pointer to a
CK_ECDH1_DERIVE_PARAMS.

¢ CK_ECMQV _DERIVE PARAMS, CK_ECMQV DERIVE PARAMS PTR

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 223

CK_ECMQV_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_ECMQV_DERIVE key derivation mechanism, where each party contributes two
key pairs. The structure is defined as follows:

typedef struct CK _ECMQV_DERI VE PARANS ({
CK_EC_KDF_TYPE kdf;
CK_ULONG ul Shar edDat aLen;
CK_BYTE_PTR pShar edDat a;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul Pri vat eDat aLen;
CK_OBJECT_HANDLE hPri vat eDat a;
CK_ULONG ul Publ i cDat aLen2;
CK_BYTE_PTR pPubl i cDat a2;
CK_OBJECT_HANDLE publ i cKey;

} CK_ECMQV_DERI VE_PARANE;

The fields of the structure have the following meanings:
kdf  key derivation function used on the shared secret value
ulSharedDataLen the length in bytes of the shared info
pSharedData some data shared between the two parties

ulPublicDataLen  the length in bytes of the other party’s first EC public
key

pPublicData pointer to other party’s first EC public key value
ulPrivateDataLen the length in bytes of the second EC private key
hPrivateData  key handle for second EC private key value

ulPublicDataLen2  the length in bytes of the other party’s second EC
public key

pPublicData?  pointer to other party’s second EC public key value
publicKey ~ Handle to the first party’s ephemeral public key

With the key derivation function CKD_NULL, pSharedData must be NULL and
ulSharedDataLen must be zero. With the key derivation function CKD_SHA1_KDF, an
optional pSharedData may be supplied, which consists of some data shared by the two
parties intending to share the shared secret. Otherwise, pSharedData must be NULL and
ulSharedDatalen must be zero.

CK_ECMQV_DERIVE _PARAMS PTR is a pointer to a
CK_ECMQV_DERIVE_PARAMS.

June 2004 Copyright © 2004 RSA Security Inc.



224 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.3.9 Elliptic curve Diffie-Hellman key derivation

The elliptic curve Diffie-Hellman (ECDH) key derivation mechanism, denoted
CKM_ECDH1 _DERIVE, is a mechanism for key derivation based on the Diffie-
Hellman version of the elliptic curve key agreement scheme, as defined in ANSI X9.63,
where each party contributes one key pair all using the same EC domain parameters.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_ VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e If the base key has its CKA ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS _SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA NEVER EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 2°* and 2°”° elements, then
ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the
number 2°* consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°” is a 301-bit number).

12.3.10 Elliptic curve Diffie-Hellman with cofactor key derivation

The elliptic curve Diffie-Hellman (ECDH) with cofactor key derivation mechanism,
denoted CKM_ECDH1_COFACTOR_DERIVE, is a mechanism for key derivation

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 225

based on the cofactor Diffie-Hellman version of the elliptic curve key agreement scheme,
as defined in ANSI X9.63, where each party contributes one key pair all using the same
EC domain parameters. Cofactor multiplication is computationally efficient and helps to
prevent security problems like small group attacks.

It has a parameter, a CK_ECDH1_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

o If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

» Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 2°*° and 2°” elements, then
ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the
number 2*% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°* is a 301-bit number).

12.3.11 Elliptic curve Menezes-Qu-Vanstone key derivation

The elliptic curve Menezes-Qu-Vanstone (ECMQV) key derivation mechanism, denoted
CKM_ECMQV_DERIVE, is a mechanism for key derivation based the MQV version
of the elliptic curve key agreement scheme, as defined in ANSI X9.63, where each party
contributes two key pairs all using the same EC domain parameters.

June 2004 Copyright © 2004 RSA Security Inc.



226 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

It has a parameter, a CK_ECMQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

o If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

» Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the minimum and maximum supported
number of bits in the field sizes, respectively. For example, if a Cryptoki library supports
only EC using a field of characteristic 2 which has between 2°*° and 2°” elements, then
ulMinKeySize = 201 and ulMaxKeySize = 301 (when written in binary notation, the
number 2*% consists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number.
Similarly, 2°* is a 301-bit number).

12.4 Diffie-Hellman

12.4.1 Definitions

This section defines the key type “CKK DH” for type CK_KEY TYPE as used in the
CKA KEY_ TYPE attribute of DH key objects.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS

Mechanisms:

CKM DH_PKCS_KEY_PAI R GEN
CKM_DH_PKCS_DERI VE
CKM_X9_42_DH_KEY_PAI R_GEN
CKM_X9_42_DH_DERI VE
CKM_X9_42_DH_HYBRI D _DERI VE
CKM_X9_42_MV_DERI VE
CKM_DH_PKCS_PARAMETER GEN
CKM_X9_42_DH_PARAMETER GEN

12.4.2 Diffie-Hellman public key objects

227

Diffie-Hellman public key objects (object class CKO_PUBLIC KEY, key type
CKK DH) hold Diffie-Hellman public keys. The following table defines the Diftie-
Hellman public key object attributes, in addition to the common attributes defined for this

object class:

Table 60, Diffie-Hellman Public Key Object Attributes

Attribute Data type Meaning
CKA PRIME'’ Big integer | Prime p

CKA BASE'? Big integer | Baseg

CKA VALUE' Big integer | Public value y

“Refer to table Table 15 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length

of the key components. See PKCS #3 for more information on Diffie-Hellman keys.

The following is a sample template for creating a Diffie-Hellman public key object:

CK_OBJECT _CLASS cl ass = CKO _PUBLI C KEY;
CK_KEY_TYPE keyType = CKK_DH;
CK_UTF8CHAR | abel [] = “A Diffie-Hell man public key
obj ect”;
CK_BYTE prinme[] = {...};
CK_BYTE base[] = {...};
CK _BYTE value[] = {...};
CK BBOOL true = CK TRUE
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof (| abel)-1},
{CKA PRI VE, prinme, sizeof(prine)},
{ CKA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}

June 2004 Copyright © 2004 RSA Security Inc.



228 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

3
12.4.3 X9.42 Diffie-Hellman public key objects

X9.42 Diffie-Hellman public key objects (object class CKO_PUBLIC_KEY, key type
CKK_X9 42 DH) hold X9.42 Diffie-Hellman public keys. The following table defines
the X9.42 Diffie-Hellman public key object attributes, in addition to the common
attributes defined for this object class:

Table 61, X9.42 Diffie-Hellman Public Key Object Attributes

Attribute Data type | Meaning

CKA PRIME'” Big integer | Prime p (= 1024 bits, in steps of 256 bits)
CKA BASE'’ Big integer | Base g

CKA_SUBPRIME'” | Biginteger | Subprime g (= 160 bits)
CKA_VALUE" Big integer | Public value y

“Refer to table Table 15 for footnotes

The CKA_PRIME, CKA BASE and CKA_SUBPRIME attribute values are
collectively the “X9.42 Diffie-Hellman domain parameters”. See the ANSI X9.42
standard for more information on X9.42 Diffie-Hellman keys.

The following is a sample template for creating a X9.42 Diffie-Hellman public key
object:

CK_OBJECT _CLASS cl ass = CKO _PUBLI C KEY;
CK_KEY_TYPE keyType = CKK X9 42 DH
CK_UTF8CHAR | abel [] “A X9.42 Diffie-Hellman public key
obj ect”;
CK_BYTE prinme[] = {...};
CK_BYTE base[] = {...};
CK_BYTE subprine[] ={...};
CK_BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{
{
{
{

CKA PRI VE, prine, sizeof(prinme)},

CKA BASE, base, sizeof(base)},

CKA SUBPRI ME, subprine, sizeof (subprine)},
CKA VALUE, val ue, sizeof(value)}

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 229

12.4.4 Diffie-Hellman private key objects

Diffie-Hellman private key objects (object class CKO PRIVATE _KEY, key type
CKK_DH) hold Diffie-Hellman private keys. The following table defines the Diffie-
Hellman private key object attributes, in addition to the common attributes defined for
this object class:

Table 62, Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"** Big integer Prime p

CKA BASE'** Big integer Base g

CKA VALUE'**’ Big integer Private value x

CKA_VALUE BITS*® | CK_ULONG | Length in bits of private value x

“Refer to table Table 15 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length
of the key components. See PKCS #3 for more information on Diffie-Hellman keys.

Note that when generating an Diffie-Hellman private key, the Diffie-Hellman parameters
are not specified in the key’s template. This is because Diffie-Hellman private keys are
only generated as part of a Diffie-Hellman key pair, and the Diffie-Hellman parameters
for the pair are specified in the template for the Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_DH;

CK_UTF8CHAR | abel[] = “A Diffie-Hellman private key

obj ect”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prine[] = {...};
CK_BYTE base[] = {...};
CK _BYTE value[] = {...};
CK BBOOL true = CK TRUE

CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA _SENSI Tl VE, &true, sizeof(true)},
{CKA DERI VE, &true, sizeof(true)},
{CKA PRI VE, prinme, sizeof(prine)},

June 2004 Copyright © 2004 RSA Security Inc.



230 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{ CKA BASE, base, sizeof(base)},
{CKA VALUE, val ue, sizeof(value)}

b
12.4.5 X9.42 Diffie-Hellman private key objects

X9.42 Diffie-Hellman private key objects (object class CKO PRIVATE KEY, key
type CKK X9 42 DH) hold X9.42 Diffie-Hellman private keys. The following table
defines the X9.42 Diffie-Hellman private key object attributes, in addition to the common
attributes defined for this object class:

Table 63, X9.42 Diffie-Hellman Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"** Big integer | Prime p (2 1024 bits, in steps of 256 bits)
CKA BASE'*° Big integer Base g

CKA _SUBPRIME'** | Biginteger | Subprime ¢ (= 160 bits)

CKA_ VALUE"*®’ Big integer Private value x

“Refer to table Table 15 for footnotes

The CKA PRIME, CKA BASE and CKA SUBPRIME attribute values are
collectively the “X9.42 Diffie-Hellman domain parameters”. Depending on the token,
there may be limits on the length of the key components. See the ANSI X9.42 standard
for more information on X9.42 Diffie-Hellman keys.

Note that when generating a X9.42 Diffie-Hellman private key, the X9.42 Diffie-
Hellman domain parameters are not specified in the key’s template. This is because
X9.42 Diffie-Hellman private keys are only generated as part of a X9.42 Diffie-Hellman
key pair, and the X9.42 Diffie-Hellman domain parameters for the pair are specified in
the template for the X9.42 Diffie-Hellman public key.

The following is a sample template for creating a X9.42 Diffie-Hellman private key
object:

CK_OBJECT_CLASS cl ass = CKO PRI VATE KEY;
CK_KEY_TYPE keyType = CKK X9 42 DH:
CK_UTF8CHAR |l abel [] = “A X9.42 Diffie-Hellman private key
obj ect”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK BYTE prinme[] = {...};
CK_BYTE base[] ={...};
CK_BYTE subprine[] = {...};
CK_BYTE value[] = {...};
CK BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 231

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA SENSI Tl VE, &true, sizeof(true)},
{CKA DERI VE, &true, sizeof(true)},
{CKA PRI VE, prinme, sizeof(primne)},
{ CKA BASE, base, sizeof(base)},
{ CKA_SUBPRI ME, subprine, sizeof (subprine)},
{CKA VALUE, val ue, sizeof(value)}
3

12.4.6 Diffie-Hellman domain parameter objects

Diffie-Hellman domain parameter objects (object class
CKO _DOMAIN PARAMETERS, key type CKK DH) hold Diffie-Hellman domain
parameters. The following table defines the Diffie-Hellman domain parameter object
attributes, in addition to the common attributes defined for this object class:

Table 64, Diffie-Hellman Domain Parameter Object Attributes

Attribute Data type Meaning

CKA_PRIME'* Big integer Prime p

CKA BASE" Big integer Base g

CKA PRIME BITS*® | CK_ULONG | Length of the prime value.

“Refer to table Table 15 for footnotes

The CKA_PRIME and CKA_BASE attribute values are collectively the “Diffie-
Hellman domain parameters”. Depending on the token, there may be limits on the length
of the key components. See PKCS #3 for more information on Diffie-Hellman domain
parameters.

The following is a sample template for creating a Diffie-Hellman domain parameter
object:

CK_OBJECT_CLASS cl ass = CKO_DOVAI N_PARAMETERS;
CK_KEY_TYPE keyType CKK_DH,;
CK_UTF8CHAR | abel [] “ADffie-Hellman domai n paraneters
obj ect”;
CK BYTE prinme[] = {...};
CK_BYTE base[] ={...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{
{

CKA TOKEN, &true, sizeof(true)},
CKA LABEL, | abel, sizeof (Il abel)-1},

June 2004 Copyright © 2004 RSA Security Inc.



232 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{CKA PRI VE, prinme, sizeof(prine)},
{ CKA BASE, base, sizeof (base)},
1

12.4.7 X9.42 Diffie-Hellman domain parameters objects

X9.42 Diffie-Hellman domain parameters objects (object class
CKO_DOMAIN_PARAMETERS, key type CKK X9 42 DH) hold X9.42 Diftie-
Hellman domain parameters. The following table defines the X9.42 Diffie-Hellman
domain parameters object attributes, in addition to the common attributes defined for this
object class:

Table 65, X9.42 Diffie-Hellman Domain Parameters Object Attributes

Attribute Data type Meaning

CKA PRIME"* Big integer | Prime p (= 1024 bits, in steps of 256 bits)
CKA BASE" Big integer Base g

CKA_SUBPRIME"* Big integer | Subprime ¢ (= 160 bits)

CKA_PRIME BITS*’ CK_ULONG | Length of the prime value.
CKA_SUBPRIME BITS* | CK_ULONG | Length of the subprime value.

“Refer to table Table 15 for footnotes

The CKA_PRIME, CKA BASE and CKA_SUBPRIME attribute values are
collectively the “X9.42 Diffie-Hellman domain parameters”. Depending on the token,
there may be limits on the length of the domain parameters components. See the ANSI
X9.42 standard for more information on X9.42 Diffie-Hellman domain parameters.

The following is a sample template for creating a X9.42 Diffie-Hellman domain
parameters object:

CK_OBJECT_CLASS cl ass = CKO DOVAI N PARAMETERS;
CK_KEY_TYPE keyType = CKK X9 42 DH
CK_UTF8CHAR | abel [] = “A X9.42 Diffie-Hellnman domain
par aneters object”;
CK_BYTE prine[] = {...};
CK_BYTE base[] = {...};
CK_BYTE subprine[] ={...};
CK BBOOL true = CK TRUE
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof (| abel)-1},
{CKA PRI VE, prinme, sizeof(prine)},
{ CKA BASE, base, sizeof (base)},
{ CKA_SUBPRI ME, subprine, sizeof (subprine)},
3

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 233

12.4.8 PKCS #3 Diffie-Hellman key pair generation

The PKCS #3 Diffie-Hellman key pair generation mechanism, denoted
CKM_DH PKCS KEY PAIR_GEN, is a key pair generation mechanism based on
Diffie-Hellman key agreement, as defined in PKCS #3. This is what PKCS #3 calls
“phase I”.

It does not have a parameter.

The mechanism generates Diffie-Hellman public/private key pairs with a particular prime
and base, as specified in the CKA PRIME and CKA BASE attributes of the template
for the public key. If the CKA VALUE_BITS attribute of the private key is specified,
the mechanism limits the length in bits of the private value, as described in PKCS #3.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE,
CKA_PRIME, CKA BASE, and CKA_VALUE (and the CKA_VALUE_BITS
attribute, if it is not already provided in the template) attributes to the new private key;
other attributes required by the Diffie-Hellman public and private key types must be
specified in the templates.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

12.4.9 PKCS #3 Diffie-Hellman domain parameter generation

The PKCS #3 Diffie-Hellman domain parameter generation mechanism, denoted
CKM_DH_PKCS_PARAMETER_GEN, is a domain parameter generation mechanism
based on Diffie-Hellman key agreement, as defined in PKCS #3.

It does not have a parameter.

The mechanism generates Diffie-Hellman domain parameters with a particular prime
length in bits, as specified in the CKA_PRIME_BITS attribute of the template.

The mechanism contributes the CKA CLASS, CKA KEY TYPE, CKA PRIME,
CKA BASE, and CKA PRIME_ BITS attributes to the new object. Other attributes
supported by the Diffie-Hellman domain parameter types may also be specified in the
template, or else are assigned default initial values.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

June 2004 Copyright © 2004 RSA Security Inc.



234 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.4.10 PKCS #3 Diffie-Hellman key derivation

The PKCS #3  Diffie-Hellman key  derivation  mechanism, denoted
CKM_DH PKCS DERIVE, is a mechanism for key derivation based on Diffie-
Hellman key agreement, as defined in PKCS #3. This is what PKCS #3 calls “phase II”.

It has a parameter, which is the public value of the other party in the key agreement
protocol, represented as a Cryptoki “Big integer” (i.e., a sequence of bytes, most-
significant byte first).

This mechanism derives a secret key from a Diffie-Hellman private key and the public
value of the other party. It computes a Diffie-Hellman secret value from the public value
and private key according to PKCS #3, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_ VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e If the base key has its CKA ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA NEVER EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of Diffie-Hellman
prime sizes, in bits.

T Note that the rules regarding the CKA_SENSITIVE, CKA EXTRACTABLE,
CKA ALWAYS SENSITIVE, and CKA NEVER_EXTRACTABLE attributes have changed in
version 2.11 to match the policy used by other key derivation mechanisms such as
CKM_SSL3_MASTER_KEY_DERIVE.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 235

12.4.11 X9.42 Diffie-Hellman mechanism parameters
¢ CK X9 42 DH_KDF _TYPE, CK_X9 42 DH KDF _TYPE_PTR

CK X9 42 DH_KDF _TYPE is used to indicate the Key Derivation Function (KDF)
applied to derive keying data from a shared secret. The key derivation function will be
used by the X9.42 Diffie-Hellman key agreement schemes. It is defined as follows:

typedef CK_ULONG CK_X9 42 DH KDF_TYPE;

The following table lists the defined functions.

Table 66, X9.42 Diffie-Hellman Key Derivation Functions

Source Identifier Value

CKD NULL 0x00000001
CKD_SHA1 KDF ASNI 0x00000003
CKD_SHA1 KDF CONCATENATE 0x00000004

The key derivation function CKD NULL produces a raw shared secret value without
applying any key derivation function whereas the key derivation functions
CKD_SHA1_KDF_ASN1 and CKD_SHA1_KDF _CONCATENATE, which are both
based on SHA-1, derive keying data from the shared secret value as defined in the ANSI
X9.42 standard.

CK X9 42 DH_KDF TYPE_PTR is a pointer to a CK_X9 42 DH_KDF TYPE.

¢ CK X9 42 DH1_DERIVE_PARAMS,
CK_X9 42 DH1 _DERIVE PARAMS PTR

CK X9 42 DH1_DERIVE_PARAMS is a structure that provides the parameters to the
CKM_X9 42 DH_DERIVE key derivation mechanism, where each party contributes
one key pair. The structure is defined as follows:

typedef struct CK X9 42 DH1 DERI VE_PARAMS {
CK_X9 42 DH_KDF_TYPE kdf
CK_ULONG ul O her I nf oLen;
CK_BYTE_PTR pQ her I nf o;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
} CK X9 42 DH1_DERI VE_PARANS;

The fields of the structure have the following meanings:

kdf  key derivation function used on the shared secret value

June 2004 Copyright © 2004 RSA Security Inc.



236 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ulOtherInfoLen  the length in bytes of the other info
pOtherinfo some data shared between the two parties

ulPublicDatalLen the length in bytes of the other party’s X9.42 Diftie-
Hellman public key

pPublicData  pointer to other party’s X9.42 Diffie-Hellman public
key value

With the key derivation function CKD NULL, pOtherinfo must be NULL and
ulOtherInfoLen  must be  zero. With  the key derivation function
CKD SHA1 _KDF ASNI1, pOtherinfo must be supplied, which contains an octet string,
specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtheriInfo may be supplied, which
consists of some data shared by the two parties intending to share the shared secret.
Otherwise, pOtherInfo must be NULL and ulOtherInfoLen must be zero.

CK X9 42 DH1 DERIVE PARAMS PTR is a  pointer to  a
CK_X9 42 DH1 DERIVE_PARAMS.

¢ CK_X9 42 DH2 DERIVE PARAMS,
CK_X9 42 DH2 DERIVE PARAMS PTR

CK X9 42 DH2 DERIVE PARAMS is a structure that provides the parameters to the
CKM _X9 42 DH_HYBRID DERIVE and CKM_X9 42 MQV_DERIVE key
derivation mechanisms, where each party contributes two key pairs. The structure is
defined as follows:

t ypedef struct CK X9 42 DH2 DERI VE PARAMS {
CK_X9_42 DH KDF_TYPE kdf;
CK_ULONG ul & her I nf oLen;
CK_BYTE_PTR pQ her I nf o;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul Pri vat eDat aLen;
CK_OBJECT_HANDLE hPri vat eDat a;
CK_ULONG ul Publ i cDat aLen2;
CK_BYTE_PTR pPubl i cDat a2;

} CK_X9_42 DH2_DERI VE_PARANS;

The fields of the structure have the following meanings:
kdf  key derivation function used on the shared secret value

ulOtherInfoLen the length in bytes of the other info

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 237

pOtherInfo some data shared between the two parties

ulPublicDataLen  the length in bytes of the other party’s first X9.42
Diffie-Hellman public key

pPublicData  pointer to other party’s first X9.42 Diffie-Hellman
public key value

ulPrivateDataLen the length in bytes of the second X9.42 Diffie-Hellman
private key

hPrivateData key handle for second X9.42 Diffie-Hellman private
key value

ulPublicDataLen2  the length in bytes of the other party’s second X9.42
Diffie-Hellman public key

pPublicData?  pointer to other party’s second X9.42 Diftfie-Hellman
public key value

With the key derivation function CKD_NULL, pOtherinfo must be NULL and
ulOtherInfoLen  must be  zero. With the key derivation function
CKD_SHA1 _KDF_ASNI1, pOtherInfo must be supplied, which contains an octet string,
specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD_SHA1_KDF_CONCATENATE, an optional pOtherinfo may be supplied, which
consists of some data shared by the two parties intending to share the shared secret.
Otherwise, pOtherinfo must be NULL and ulOtherInfoLen must be zero.

CK_X9 42 DH2 DERIVE_PARAMS_PTR 1s a pointer to a
CK_X9 42 DH2 DERIVE_PARAMS.

June 2004 Copyright © 2004 RSA Security Inc.



238 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

¢ CK X9 42 MQV_DERIVE PARAMS,
CK_X9 42 MQV_DERIVE_PARAMS_PTR

CK X9 42 MQV_DERIVE _PARAMS is a structure that provides the parameters to
the CKM_X9 42 MQV_DERIVE key derivation mechanism, where each party
contributes two key pairs. The structure is defined as follows:

t ypedef struct CK X9 _42 MY} _DERI VE_PARAMS {
CK_X9_42 DH KDF_TYPE kdf;
CK_ULONG ul O her I nf oLen;
CK_BYTE_PTR pQ her I nf o;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul Pri vat eDat aLen;
CK_OBJECT_HANDLE hPri vat eDat a;
CK_ULONG ul Publ i cDat aLen2;
CK_BYTE_PTR pPubl i cDat a2;
CK_OBJECT_HANDLE publ i cKey;

} CK_X9_ 42 MQV_DERI VE_PARAMNS;

The fields of the structure have the following meanings:

kdf
ulOtherInfoLen
pOtherinfo

ulPublicDatalLen

pPublicData

ulPrivateDataLen

hPrivateData

ulPublicDatalen?2

pPublicData?2

publicKey

Copyright © 2004 RSA Security Inc.

key derivation function used on the shared secret value
the length in bytes of the other info
some data shared between the two parties

the length in bytes of the other party’s first X9.42
Diffie-Hellman public key

pointer to other party’s first X9.42 Diffie-Hellman
public key value

the length in bytes of the second X9.42 Diftie-Hellman
private key

key handle for second X9.42 Diffie-Hellman private
key value

the length in bytes of the other party’s second X9.42
Diffie-Hellman public key

pointer to other party’s second X9.42 Diffie-Hellman
public key value

Handle to the first party’s ephemeral public key

June 2004



12. MECHANISMS 239

With the key derivation function CKD_NULL, pOtherinfo must be NULL and
ulOtherInfoLen  must be  zero. With the key derivation function
CKD_SHA1 _KDF_ASNI1, pOtherInfo must be supplied, which contains an octet string,
specified in ASN.1 DER encoding, consisting of mandatory and optional data shared by
the two parties intending to share the shared secret. With the key derivation function
CKD SHA1 KDF CONCATENATE, an optional pOtherInfo may be supplied, which
consists of some data shared by the two parties intending to share the shared secret.
Otherwise, pOtherInfo must be NULL and u/OtherInfoLen must be zero.

CK_X9 42 MQV_DERIVE_PARAMS PTR is a pointer to a
CK X9 42 MQV_DERIVE_PARAMS.

12.4.12 X9.42 Diffie-Hellman key pair generation

The X9.42 Diffie-Hellman key pair generation mechanism, denoted
CKM_X9 42 DH_KEY_PAIR_GEN, is a key pair generation mechanism based on
Diffie-Hellman key agreement, as defined in the ANSI X9.42 standard.

It does not have a parameter.

The mechanism generates X9.42 Diffie-Hellman public/private key pairs with a
particular prime, base and subprime, as specified in the CKA PRIME, CKA BASE and
CKA_SUBPRIME attributes of the template for the public key.

The mechanism contributes the CKA CLASS, CKA KEY _TYPE, and CKA VALUE
attributes to the new public key and the CKA CLASS, CKA KEY TYPE,
CKA_PRIME, CKA_BASE, CKA_SUBPRIME, and CKA_VALUE attributes to the
new private key; other attributes required by the X9.42 Diffie-Hellman public and private
key types must be specified in the templates.

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA_PRIME attribute.

12.4.13 X9.42 Diffie-Hellman domain parameter generation

The X9.42 Diffie-Hellman domain parameter generation mechanism, denoted
CKM X9 42 DH PARAMETER GEN, is a domain parameters generation
mechanism based on X9.42 Diffie-Hellman key agreement, as defined in the ANSI X9.42
standard.

It does not have a parameter.

June 2004 Copyright © 2004 RSA Security Inc.



240 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The mechanism generates X9.42 Diffie-Hellman domain parameters with particular
prime and subprime length in bits, as specified in the CKA_PRIME_BITS and
CKA_SUBPRIME_BITS attributes of the template for the domain parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, CKA_ PRIME,
CKA_BASE, CKA_SUBPRIME, CKA_PRIME_BITS and CKA_SUBPRIME_BITS
attributes to the new object. Other attributes supported by the X9.42 Diffie-Hellman
domain parameter types may also be specified in the template for the domain parameters,
or else are assigned default initial values.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits.

12.4.14 X9.42 Diffie-Hellman key derivation

The X9.42 Diffie-Hellman key derivation mechanism, denoted
CKM _X9 42 DH DERIVE, is a mechanism for key derivation based on the Diffie-
Hellman key agreement scheme, as defined in the ANSI X9.42 standard, where each
party contributes one key pair, all using the same X9.42 Diffie-Hellman domain
parameters.

It has a parameter, a CK_X9 42 DH1 _DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template. Note that in order to validate this mechanism it may be required
to use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA 1 HMAC GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 241

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA NEVER EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA_PRIME attribute.

12.4.15 X9.42 Diffie-Hellman hybrid key derivation

The X9.42 Diffie-Hellman hybrid key derivation mechanism, denoted
CKM_X9 42 DH HYBRID_ DERIVE, is a mechanism for key derivation based on the
Diffie-Hellman hybrid key agreement scheme, as defined in the ANSI X9.42 standard,
where each party contributes two key pair, all using the same X9.42 Diffie-Hellman
domain parameters.

It has a parameter, a CK_X9 42 DH2 DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template. Note that in order to validate this mechanism it may be required
to use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA 1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

» If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_ NEVER _EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

June 2004 Copyright © 2004 RSA Security Inc.



242 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA_PRIME attribute.

12.4.16 X9.42 Diffie-Hellman Menezes-Qu-Vanstone key derivation

The X9.42 Diffie-Hellman Menezes-Qu-Vanstone (MQV) key derivation mechanism,
denoted CKM_X9 42 MQV_DERIVE, is a mechanism for key derivation based the
MQYV scheme, as defined in the ANSI X9.42 standard, where each party contributes two
key pairs, all using the same X9.42 Diffie-Hellman domain parameters.

It has a parameter, a CK_X9 42 MQV_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template. Note that in order to validate this mechanism it may be required
to use the CKA_VALUE attribute as the key of a general-length MAC mechanism (e.g.
CKM_SHA 1 HMAC_GENERAL) over some test data.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

» If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_ NEVER _EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of X9.42 Diffie-
Hellman prime sizes, in bits, for the CKA_PRIME attribute.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 243

125 KEA

12.5.1 Definitions

This section defines the key type “CKK KEA” for type CK_KEY TYPE as used in the
CKA _KEY_ TYPE attribute of key objects.

Mechanisms:

CKM KEA_KEY_PAI R_GEN
CKM_KEA_KEY_DERI VE

12.5.2 KEA mechanism parameters

¢ CK_KEA DERIVE_PARAMS; CK_KEA DERIVE PARAMS PTR

CK KEA DERIVE PARAMS is a structure that provides the parameters to the
CKM_KEA DERIVE mechanism. It is defined as follows:

t ypedef struct CK KEA DERI VE PARAMS {
CK _BBOOL i sSender;
CK_ULONG ul Randonien;
CK_BYTE_PTR pRandonA;
CK_BYTE_PTR pRandonB;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;

} CK_KEA DERI VE_PARANS:

The fields of the structure have the following meanings:

isSender ~ Option for generating the key (called a TEK). The
value is CK_TRUE if the sender (originator) generates
the TEK, CK_FALSE if the recipient is regenerating
the TEK.

ulRandomLen size of random Ra and Rb, in bytes
pRandomA pointer to Ra data
pRandomB  pointer to Rb data
ulPublicDatalLen other party’s KEA public key size
pPublicData pointer to other party’s KEA public key value

CK_KEA DERIVE _PARAMS PTR is a pointer to a
CK_KEA _DERIVE_PARAMS.

June 2004 Copyright © 2004 RSA Security Inc.



244 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.5.3 KEA public key objects

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold
KEA public keys. The following table defines the KEA public key object attributes, in
addition to the common attributes defined for this object class:

Table 67, KEA Public Key Object Attributes

Attribute Data type Meaning

CKA PRIME'” Big integer | Prime p (512 to 1024 bits, in steps of 64 bits)
CKA SUBPRIME'” Big integer | Subprime ¢ (160 bits)

CKA BASE'’ Big integer | Base g (512 to 1024 bits, in steps of 64 bits)
CKA_VALUE" Big integer | Public value y

“Refer to table Table 15 for footnotes

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute values are
collectively the “KEA domain parameters”.

The following is a sample template for creating a KEA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_KEA:;
CK_UTF8CHAR | abel [] “A KEA public key object”;
CK BYTE prinme[] = {...};
CK_BYTE subprine[] ={...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK BBOOL true = CK _TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{CKA PRI VE, prinme, sizeof(prine)},
{ CKA SUBPRI MVE, subprine, sizeof (subprine)},
{ CKA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}

b
12.5.4 KEA private key objects

KEA private key objects (object class CKO_PRIVATE KEY, key type CKK KEA)
hold KEA private keys. The following table defines the KEA private key object
attributes, in addition to the common attributes defined for this object class:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS

Table 68, KEA Private Key Object Attributes

Attribute Data type | Meaning

CKA_PRIME"** Big integer | Prime p (512 to 1024 bits, in steps of
64 bits)

CKA_SUBPRIME'*® | Big integer | Subprime ¢ (160 bits)

CKA BASE'** Big integer | Base g (512 to 1024 bits, in steps of
64 bits)

CKA VALUE'**’ Big integer | Private value x

“Refer to table Table 15 for footnotes

The CKA_PRIME, CKA SUBPRIME and CKA_BASE attribute values

collectively the “KEA domain parameters”.

245

arc

Note that when generating a KEA private key, the KEA parameters are not specified in
the key’s template. This is because KEA private keys are only generated as part of a
KEA key pair, and the KEA parameters for the pair are specified in the template for the

KEA public key.

The following is a sample template for creating a KEA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE KEY;
CK_KEY_TYPE keyType = CKK_KEA;
CK_UTF8CHAR | abel [] “A KEA private key object”;
CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK BYTE prinme[] = {...};

CK_BYTE subprine[] ={...};

CK_BYTE base[] = {...};

CK_BYTE value[] = {...};

CK BBOOL true = CK_TRUE;

CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{
{
{
{
{
{

CKA SENSI Tl VE, &true, sizeof(true)},

CKA DERI VE, &true, sizeof(true)},

CKA PRI VE, prine, sizeof(prine)},

CKA SUBPRI VE, subprinme, sizeof (subprine)},
CKA BASE, base, sizeof(base)},

CKA VALUE, val ue, sizeof(value)}

June 2004 Copyright © 2004 RSA Security Inc.



246 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.5.5 KEA key pair generation

The KEA key pair generation mechanism, denoted CKM_KEA KEY_ PAIR_GEN,
generates key pairs for the Key Exchange Algorithm, as defined by NIST’s “SKIPJACK
and KEA Algorithm Specification Version 2.0”, 29 May 1998.

It does not have a parameter.

The mechanism generates KEA public/private key pairs with a particular prime,
subprime and base, as specified in the CKA PRIME, CKA_SUBPRIME, and
CKA_BASE attributes of the template for the public key. Note that this version of
Cryptoki does not include a mechanism for generating these KEA domain parameters.

The mechanism contributes the CKA_CLASS, CKA KEY _TYPE and CKA VALUE
attributes to the new public key and the CKA CLASS, CKA KEY TYPE,
CKA_PRIME, CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the
new private key. Other attributes supported by the KEA public and private key types
(specifically, the flags indicating which functions the keys support) may also be specified
in the templates for the keys, or else are assigned default initial values.

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of KEA prime sizes, in
bits.

12.5.6 KEA key derivation

The KEA key derivation mechanism, denoted CKM_KEA DERIVE, is a mechanism
for key derivation based on KEA, the Key Exchange Algorithm, as defined by NIST’s
“SKIPJACK and KEA Algorithm Specification Version 2.0, 29 May 1998.

It has a parameter, a CK_KEA_DERIVE_PARAMS structure.

This mechanism derives a secret value, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supports
it, the CKA_VALUE_LEN attribute of the template. (The truncation removes bytes
from the leading end of the secret value.) The mechanism contributes the result as the
CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

As defined in the Specification, KEA can be used in two different operational modes: full
mode and e-mail mode. Full mode is a two-phase key derivation sequence that requires
real-time parameter exchange between two parties. E-mail mode is a one-phase key
derivation sequence that does not require real-time parameter exchange. By convention,
e-mail mode is designated by use of a fixed value of one (1) for the KEA parameter Ry,
(pRandomB).

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 247

The operation of this mechanism depends on two of the values in the supplied
CK_KEA DERIVE PARAMS structure, as detailed in the table below. Note that, in all
cases, the data buffers pointed to by the parameter structure fields pRandomA and
pRandomB must be allocated by the caller prior to invoking C_DeriveKey. Also, the
values pointed to by pRandomA and pRandomB are represented as Cryptoki “Big
integer” data (i.e., a sequence of bytes, most-significant byte first).

Table 69, KEA Parameter Values and Operations
Value of Value of

boolean big integer Token Action
isSender pRandomB (after checking parameter and template values)
CK TRUE 0 Compute KEA R, value, store it in pRandomA, return
CKR_OK. No derived key object is created.
CK TRUE 1 Compute KEA R, value, store it in pRandomA, derive

key value using e-mail mode, create key object,
return CKR_OK.

CK _TRUE >1 Compute KEA R, value, store it in pRandomA, derive
key value using full mode, create key object, return
CKR OK.

CK_FALSE 0 Compute KEA Ry, value, store it in pRandomB, return
CKR_OK. No derived key object is created.

CK FALSE 1 Derive key value using e-mail mode, create key
object, return CKR _OK.

CK _FALSE >1 Derive key value using full mode, create key object,

return CKR OK.

Note that the parameter value pRandomB == 0 is a flag that the KEA mechanism is being
invoked to compute the party’s public random value (R, or Ry, for sender or recipient,
respectively), not to derive a key. In these cases, any object template supplied as the
C _DeriveKey pTemplate argument should be ignored.

This mechanism has the following rules about key sensitivity and extractability*:

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

! Note that the rules regarding the CKA_SENSITIVE, CKA EXTRACTABLE,
CKA ALWAYS SENSITIVE, and CKA NEVER_EXTRACTABLE attributes have changed in
version 2.11 to match the policy used by other key derivation mechanisms such as
CKM_SSL3_MASTER_KEY_DERIVE.

June 2004 Copyright © 2004 RSA Security Inc.



248 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

e If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of KEA prime sizes, in
bits.

12.6 Wrapping/unwrapping private keys

Cryptoki Versions 2.01 and up allow the use of secret keys for wrapping and unwrapping
RSA private keys, Diffie-Hellman private keys, X9.42 Diffie-Hellman private keys, EC
(also related to ECDSA) private keys and DSA private keys. For wrapping, a private key
is BER-encoded according to PKCS #8’s PrivateKeyInfo ASN.1 type. PKCS #8 requires
an algorithm identifier for the type of the private key. The object identifiers for the
required algorithm identifiers are as follows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}
dhKeyAgr eenent OBJECT IDENTIFIER ::= { pkcs-3 1 }
dhpubl i cnunber OBJECT IDENTIFIER ::= { iso(1l) nmenber-
body(2) us(840) ansi-x942(10046) nunber-type(2) 1 }
i d-ecPublicKey OBJECT IDENTIFIER ::= { iso(1) nenber-
body(2) us(840) ansi-x9-62(10045) publicKeyType(2) 1 }
i d-dsa OBJECT I DENTIFIER ::= {
i so(1l) nenber-body(2) us(840) x9-57(10040) x9cm(4) 1 }
where
pkcs-1 OBJECT IDENTIFIER :: = {
i so(1l) nmenber-body(2) US(840) rsadsi(113549) pkcs(1l) 1
pkcs-3 OBJECT IDENTIFIER :: = {
i so(1l) nenber-body(2) US(840) rsadsi(113549) pkcs(1l) 3
}

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 249

These parameters for the algorithm identifiers have the following types, respectively:

NULL
DHPar anmet er :: = SEQUENCE {
prime I NTEGER, -- p
base | NTECER, -- ¢
privat eVal ueLength | NTEGER OPTI ONAL
}
Domai nPar aneters ::= SEQUENCE {
prime | NTEGER, -- p
base | NTEGER, -- ¢
subpri nme | NTEGER, --
cof act or | NTEGER OPTI ONAL, -- |
val i dati onPar ns Val i dati onParms OPTI ONAL
}
Val i dati onParns ::= SEQUENCE {
Seed BIT STRING -- seed
PGenCount er | NTEGER -- paranmeter verification
}
Paraneters ::= CHO CE {
ecPar aneters ECPar anet er s,
namedCur ve CURVES. & d({CurveNanes}),
inplicitlyCA  NULL
}
Dss-Parns ::= SEQUENCE {
p | NTEGER,
g | NTEGER,
g | NTEGER
}

For the X9.42 Diffie-Hellman domain parameters, the cofactor and the validationParms
optional fields should not be used when wrapping or unwrapping X9.42 Diffie-Hellman
private keys since their values are not stored within the token.

For the EC domain parameters, the use of namedCurve is recommended over the choice
ecParameters. The choice implicitlyCA must not be used in Cryptoki.

Within the PrivateKeylInfo type:

* RSA private keys are BER-encoded according to PKCS #1°s RSAPrivateKey ASN.1
type. This type requires values to be present for all the attributes specific to
Cryptoki’s RSA private key objects. In other words, if a Cryptoki library does not
have values for an RSA private key’s CKA _MODULLUS,

June 2004 Copyright © 2004 RSA Security Inc.



250 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME 1,
CKA_PRIME 2, CKA_EXPONENT 1, CKA_EXPONENT?2, and
CKA_COEFFICIENT values, it cannot create an RSAPrivateKey BER-encoding of
the key, and so it cannot prepare it for wrapping.

* Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.

* X9.42 Diffie-Hellman private keys are represented as BER-encoded ASN.1 type
INTEGER.

* EC (also related with ECDSA) private keys are BER-encoded according to SECG
SEC 1 ECPrivateKey ASN.1 type:

ECPri vat eKey ::= SEQUENCE ({
Ver si on | NTEGER { ecPrivkeyVer1(1) }
(ecPrivkeyVer1l),
pri vat eKey OCTET STRI NG
par anmet ers [ 0] Parameters OPTI ONAL,
publ i cKey [ 1] BI'T STRI NG OPTI ONAL

}

Since the EC domain parameters are placed in the PKCS #8’s privateKeyAlgorithm
field, the optional parameters field in an ECPrivateKey must be omitted. A
Cryptoki application must be able to unwrap an ECPrivateKey that contains the
optional publicKey field; however, what is done with this publicKey field is outside
the scope of Cryptoki.

* DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeyInfo type, the resulting string
of bytes is encrypted with the secret key. This encryption must be done in CBC mode
with PKCS padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted
ciphertext is decrypted, and the PKCS padding is removed. The data thereby obtained
are parsed as a PrivateKeyInfo type, and the wrapped key is produced. An error will
result if the original wrapped key does not decrypt properly, or if the decrypted unpadded
data does not parse properly, or its type does not match the key type specified in the
template for the new key. The unwrapping mechanism contributes only those attributes
specified in the PrivateKeylInfo type to the newly-unwrapped key; other attributes must
be specified in the template, or will take their default values.

Earlier drafts of PKCS #11 Version 2.0 and Version 2.01 used the object identifier

DSA OBJECT IDENTIFIER ::= { algorithm12 }
al gorithm OBJECT I DENTIFIER ::= {
iso(l) identifier-organization(3) oiw14) secsig(3)
al gorithm2) }

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 251

with associated parameters

DSAPar anet ers :: = SEQUENCE {
prinmel | NTEGER, -- nodulus p
prime2 | NTEGER, -- nodulus g
base I NTEGER -- base g

}

for wrapping DSA private keys. Note that although the two structures for holding DSA
domain parameters appear identical when instances of them are encoded, the two
corresponding object identifiers are different.

12.7  Generic secret key

12.7.1 Definitions

This section defines the key type “CKK GENERIC SECRET” for type
CK KEY TYPE as used in the CKA KEY TYPE attribute of key objects.

Mechanisms:
CKM_GENERI C_SECRET_KEY_GEN
12.7.2 Generic secret key objects

Generic secret key objects (object class CKO_SECRET KEY, key type
CKK_GENERIC_SECRET) hold generic secret keys. These keys do not support
encryption, decryption, signatures or verification; however, other keys can be derived
from them. The following table defines the generic secret key object attributes, in
addition to the common attributes defined for this object class:

These key types are used in several of the mechanisms described in this section.

Table 70, Generic Secret Key Object Attributes

Attribute Data type Meaning

CKA_ VALUE'*®7 Byte array Key value (arbitrary
length)

CKA VALUE LEN*’ | CK ULONG | Length in bytes of key
value

“Refer to table Table 15 for footnotes

The following is a sample template for creating a generic secret key object:

CK_OBJECT CLASS cl ass = CKO SECRET KEY:

June 2004 Copyright © 2004 RSA Security Inc.



252 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_KEY_TYPE keyType = CKK_GENERI C_SECRET;
CK_UTF8CHAR | abel [] = “A generic secret key object”;
CK_BYTE value[] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{CKA DERI VE, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

¥

CKA CHECK _VALUE: The value of this attribute is derived from the key object by
taking the first three bytes of the SHA-1 hash of the generic secret key object’s
CKA_ VALUE attribute.

12.7.3 Generic secret key generation

The generic secret key generation mechanism, denoted
CKM_GENERIC SECRET _KEY_GEN, is used to generate generic secret keys. The
generated keys take on any attributes provided in the template passed to the
C_GenerateKey call, and the CKA_VALUE_LEN attribute specifies the length of the
key to be generated.

It does not have a parameter.

The template supplied must specify a value for the CKA_VALUE_LEN attribute. If the
template specifies an object type and a class, they must have the following values:

CK_OBJECT_CLASS = CKO_SECRET_KEY;

CK_KEY_TYPE = CKK_GENERIC_SECRET;
For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of key sizes, in bits.
12.8 HMAC mechanisms

Refer RFC2104 and FIPS 198 for HMAC algorithm description. The HMAC secret key
shall correspond to the PKCS11 generic secret key type. Such keys, for use with HMAC
operations can be created using C_CreateObject or C_GenerateKey.

The RFC also specifies test vectors for the various hash function based HMAC
mechanisms described in the respective hash mechanism descriptions. The RFC should
be consulted to obtain these test vectors.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 253

129 RC2

RC2 is a block cipher which is trademarked by RSA Security. It has a variable keysize
and an additional parameter, the “effective number of bits in the RC2 search space”,
which can take on values in the range 1-1024, inclusive. The effective number of bits in
the RC2 search space is sometimes specified by an RC2 “version number”; this “version
number” is not the same thing as the “effective number of bits”, however. There is a
canonical way to convert from one to the other.

12.9.1 Definitions

This section defines the key type “CKK RC2” for type CK_KEY TYPE as used in the
CKA KEY TYPE attribute of key objects.

Mechanisms:

CKM RC2_KEY_GEN
CKM_RC2_ECB
CKM_RC2_CBC
CKM_RC2_MAC
CKM_RC2_MAC_GENERAL
CKM_RC2_CBC_PAD

12.9.2 RC2 secret key objects
RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK RC2) hold

RC2 keys. The following table defines the RC2 secret key object attributes, in addition
to the common attributes defined for this object class:

Table 71, RC2 Secret Key Object Attributes

Attribute Data type Meaning

CKA VALUE'**’ Byte array | Key value (1 to 128
bytes)

CKA VALUE LEN*® | CK ULONG | Length in bytes of key
value

“Refer to table Table 15 for footnotes

The following is a sample template for creating an RC2 secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK RC2;
CK_UTF8CHAR | abel [] “An RC2 secret key object”;
CK_BYTE value[] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

June 2004 Copyright © 2004 RSA Security Inc.



254 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

¥

12.9.3 RC2 mechanism parameters

¢ CK_RC2 PARAMS; CK_RC2 PARAMS PTR

CK_RC2 PARAMS provides the parameters to the CKM_RC2_ECB and
CKM_RC2_MAC mechanisms. It holds the effective number of bits in the RC2 search
space. It is defined as follows:

typedef CK _ULONG CK _RC2_PARANS;

CK_RC2_PARAMS_PTR is a pointer to a CK_RC2_PARAMS.

¢ CK RC2_CBC_PARAMS; CK_RC2_CBC_PARAMS_PTR

CK RC2 CBC PARAMS is a structure that provides the parameters to the
CKM_RC2 CBC and CKM_RC2 CBC_PAD mechanisms. It is defined as follows:

t ypedef struct CK RC2_CBC PARAMS {
CK_ULONG ul EffectiveBits;
CK_BYTE i v][ 8];
} CK_RC2_CBC_PARANS;
The fields of the structure have the following meanings:

ulEffectiveBits  the effective number of bits in the RC2 search space

iv  the initialization vector (IV) for cipher block chaining
mode

CK_RC2_CBC_PARAMS_PTR is a pointer to a CK_RC2_CBC_PARAMS.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 255
¢ CK RC2 MAC_GENERAL_PARAMS;
CK_RC2 MAC_GENERAL PARAMS PTR

CK_RC2_MAC_GENERAL_PARAMS is a structure that provides the parameters to
the CKM_RC2_MAC_GENERAL mechanism. It is defined as follows:

typedef struct CK RC2_MAC GENERAL_ PARAMS {
CK_ULONG ul EffectiveBits;

CK_ULONG ul MacLengt h;
} CK_RC2_MAC CGENERAL_PARAMS;

The fields of the structure have the following meanings:
ulEffectiveBits the effective number of bits in the RC2 search space
ulMacLength length of the MAC produced, in bytes
CK_RC2_MAC_GENERAL_PARAMS PTR is a pointer to a
CK_RC2_MAC_GENERAL_PARAMS.
12.9.4 RC2 key generation

The RC2 key generation mechanism, denoted CKM_RC2 KEY GEN, is a key
generation mechanism for RSA Security’s block cipher RC2.

It does not have a parameter.

The mechanism generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC2 key type (specifically,
the flags indicating which functions the key supports) may be specified in the template
for the key, or else are assigned default initial values.

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC2 key sizes, in
bits.

12.9.5 RC2-ECB

RC2-ECB, denoted CKM_RC2_ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s
block cipher RC2 and electronic codebook mode as defined in FIPS PUB 81.

June 2004 Copyright © 2004 RSA Security Inc.



256 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

It has a parameter, a CK_RC2_PARAMS, which indicates the effective number of bits
in the RC2 search space.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_ VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 72, RC2-ECB: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt RC2 multiple of 8 same as input length no final part

C Decrypt RC2 multiple of 8 same as input length no final part

C_WrapKey RC2 any input length rounded up to

multiple of 8

C_UnwrapKey | RC2 multiple of 8 | determined by type of key
being unwrapped or
CKA_VALUE LEN

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

12.9.6 RC2-CBC

RC2-CBC, denoted CKM_RC2 CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s
block cipher RC2 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates
the effective number of bits in the RC2 search space, and the next field is the
initialization vector for cipher block chaining mode.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 257

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 73, RC2-CBC: Key And Data Length

Function Key Input length Output length Comments
type

C_Encrypt RC2 multiple of 8 same as input length no final part

C_Decrypt RC2 multiple of 8 same as input length no final part

C_WrapKey RC2 any input length rounded up

to multiple of 8

C UnwrapKey | RC2 multiple of 8 determined by type of
key being unwrapped or
CKA VALUE LEN

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

12.9.7 RC2-CBC with PKCS padding

RC2-CBC with PKCS padding, denoted CKM_RC2_CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on RSA Security’s block cipher RC2; cipher-block chaining mode as defined in
FIPS PUB 81; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC2_CBC_PARAMS structure, where the first field indicates
the effective number of bits in the RC2 search space, and the next field is the
initialization vector.

June 2004 Copyright © 2004 RSA Security Inc.



258 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section 12.6 for details). The entries in the table below for data
length constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 74, RC2-CBC with PKCS Padding: Key And Data Length

Function Key Input length Output length
type

C_Encrypt RC2 any input length rounded up to
multiple of 8

C_Decrypt RC2 multiple of 8 between 1 and 8 bytes

shorter than input length

C_WrapKey RC2 any input length rounded up to

multiple of 8

C _UnwrapKey | RC2 multiple of 8 between 1 and 8 bytes
shorter than input length

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

12.9.8 General-length RC2-MAC

General-length RC2-MAC, denoted CKM_RC2_MAC_GENERAL, is a mechanism for
single- and multiple-part signatures and verification, based on RSA Security’s block
cipher RC2 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_RC2 MAC_ GENERAL_ PARAMS structure, which specifies
the effective number of bits in the RC2 search space and the output length desired from
the mechanism.

The output bytes from this mechanism are taken from the start of the final RC2 cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 259

Table 75, General-length RC2-MAC: Key And Data Length

Function Key type | Data length Signature length
C Sign RC2 any 0-8, as specified in parameters
C Verify RC2 any 0-8, as specified in parameters

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

12.9.9 RC2-MAC

RC2-MAC, denoted by CKM_RC2_MAUQC, is a special case of the general-length RC2-
MAC  mechanism (see  Section  12.9.8). Instead of taking a
CK RC2 MAC_GENERAL PARAMS parameter, it takes a CK RC2 PARAMS
parameter, which only contains the effective number of bits in the RC2 search space.
RC2-MAC always produces and verifies 4-byte MACs.

Constraints on key types and the length of data are summarized in the following table:

Table 76, RC2-MAC: Key And Data Length

Function Key type | Data length Signature length
C Sign RC2 any 4
C Verify RC2 any 4

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RC2 effective
number of bits.

12.10 RC4

12.10.1 Definitions

This section defines the key type “CKK RC4” for type CK_KEY TYPE as used in the
CKA _KEY_ TYPE attribute of key objects.

Mechanisms:

CKM RC4_KEY_GEN
CKM_RCA

June 2004 Copyright © 2004 RSA Security Inc.



260 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.10.2 RC4 secret key objects

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK RC4) hold
RC4 keys. The following table defines the RC4 secret key object attributes, in addition
to the common attributes defined for this object class:

Table 77, RC4 Secret Key Object

Attribute Data type Meaning

CKA_ VALUE"**’ Byte array Key value (1 to 256
bytes)

CKA VALUE_LEN**° | CK_ULONG | Length in bytes of key
value

“Refer to table Table 15 for footnotes

The following is a sample template for creating an RC4 secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC4;

CK_UTF8CHAR | abel [] “An RCA secret key object”;
CK_BYTE value[] = {...};

CK BBOOL true = CK TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA ENCRYPT, &true, sizeof(true)},
CKA VALUE, val ue, sizeof(value)}

3
12.10.3 RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4 KEY GEN, is a key
generation mechanism for RSA Security’s proprietary stream cipher RC4.

It does not have a parameter.

The mechanism generates RC4 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC4 key type (specifically,
the flags indicating which functions the key supports) may be specified in the template
for the key, or else are assigned default initial values.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 261

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RC4 key sizes, in
bits.

12.104 RC4 mechanism

RC4, denoted CKM_RC4, is a mechanism for single- and multiple-part encryption and
decryption based on RSA Security’s proprietary stream cipher RC4.

It does not have a parameter.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 78, RC4: Key And Data Length

Function Key type | Input length Output length Comments

C_Encrypt RC4 any same as input no final part
length

C_Decrypt RC4 any same as input no final part
length

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC4 key sizes, in
bits.

12.11 RCS

RCS5 is a parametrizable block cipher patented by RSA Security. It has a variable
wordsize, a variable keysize, and a variable number of rounds. The blocksize of RC5 is
always equal to twice its wordsize.

12.11.1 Definitions

This section defines the key type “CKK RC5” for type CK_KEY TYPE as used in the
CKA _KEY_ TYPE attribute of key objects.

Mechanisms:

CKM RC5_KEY_GEN
CKM_RC5_ECB
CKM_RC5_CBC
CKM_RC5_MAC
CKM_RC5_MAC_GENERAL
CKM_RC5_CBC_PAD

June 2004 Copyright © 2004 RSA Security Inc.



262 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.11.2 RCS secret key objects

RCS5 secret key objects (object class CKO_SECRET_KEY, key type CKK_ RCS5) hold
RCS keys. The following table defines the RCS5 secret key object attributes, in addition
to the common attributes defined for this object class:

Table 79, RCS Secret Key Object

Attribute Data type Meaning

CKA_ VALUE"**’ Byte array Key value (0 to 255
bytes)

CKA VALUE_LEN**° | CK_ULONG | Length in bytes of key
value

“Refer to table Table 15 for footnotes

The following is a sample template for creating an RC5 secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC5;

CK_UTF8CHAR | abel [] “An RC5 secret key object”;
CK_BYTE value[] = {...};

CK BBOOL true = CK TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA ENCRYPT, &true, sizeof(true)},
CKA VALUE, val ue, sizeof(value)}

}

12.11.3 RCS mechanism parameters

¢ CK_RC5 PARAMS; CK_RC5 PARAMS PTR

CK_RC5 PARAMS provides the parameters to the CKM_RC5 ECB and
CKM_RCS_MAC mechanisms. It is defined as follows:

t ypedef struct CK RC5_PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;

} CK_RC5_PARAMS;

The fields of the structure have the following meanings:

ulWordsize wordsize of RC5 cipher in bytes

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 263

ulRounds ~ number of rounds of RC5 encipherment

CK_RC5_PARAMS _PTR is a pointer to a CK_RC5_PARAMS.

¢ CK_RC5 CBC_PARAMS; CK_RC5 CBC_PARAMS PTR

CK RC5 CBC_PARAMS is a structure that provides the parameters to the
CKM_RCS_CBC and CKM_RCS5_CBC_PAD mechanisms. It is defined as follows:

typedef struct CK RC5_CBC _PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
CK_BYTE_PTR pl v;
CK_ULONG ul I vLen;
} CK_RC5_CBC_PARANS;
The fields of the structure have the following meanings:
ulWordsize ~ wordsize of RCS cipher in bytes
ulRounds ~ number of rounds of RC5 encipherment

plv  pointer to initialization vector (IV) for CBC encryption

ullvLen length of initialization vector (must be same as
blocksize)

CK_RC5_CBC_PARAMS PTR s a pointer to a CK_RC5_CBC_PARAMS.
¢ CK RC5 MAC_GENERAL_PARAMS;
CK_RC5_MAC_GENERAL_PARAMS PTR

CK_RC5 MAC_GENERAL_PARAMS is a structure that provides the parameters to
the CKM_RC5_MAC_GENERAL mechanism. It is defined as follows:

t ypedef struct CK RC5_MAC GENERAL PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
CK_ULONG ul MacLengt h;
} CK_RC5_MAC _GENERAL_PARAMS;
The fields of the structure have the following meanings:

ulWordsize ~ wordsize of RC5 cipher in bytes

ulRounds number of rounds of RC5 encipherment

June 2004 Copyright © 2004 RSA Security Inc.



264 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ulMacLength  length of the MAC produced, in bytes

CK_RC5_ MAC_GENERAL_PARAMS PTR is a pointer to a
CK_RC5 _MAC_GENERAL_PARAMS.

12.11.4 RCS key generation

The RCS5 key generation mechanism, denoted CKM_ RC5 KEY GEN, is a key
generation mechanism for RSA Security’s block cipher RCS.

It does not have a parameter.

The mechanism generates RC5 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA VALUE
attributes to the new key. Other attributes supported by the RCS5 key type (specifically,
the flags indicating which functions the key supports) may be specified in the template
for the key, or else are assigned default initial values.

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RC5 key sizes, in
bytes.

12.11.5 RCS-ECB

RC5-ECB, denoted CKM_RC5_ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s
block cipher RC5 and electronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5 PARAMS, which indicates the wordsize and number of
rounds of encryption to use.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with null bytes so that the resulting length is a multiple of the
cipher blocksize (twice the wordsize). The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attributes of the template and, if it has one, and the
key type supports it, the CKA _VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 265

Constraints on key types and the length of data are summarized in the following table:

Table 80, RC5-ECB: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt RC5 multiple of same as input length no final part
blocksize
C Decrypt RC5 multiple of same as input length no final part
blocksize
C_ WrapKey RC5 any input length rounded up to
multiple of blocksize
C UnwrapKey | RC5 multiple of determined by type of key
blocksize being unwrapped or
CKA _VALUE LEN

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in
bytes.

12.11.6 RC5-CBC

RC5-CBC, denoted CKM_RCS _CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Security’s
block cipher RCS5 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RCS_CBC_PARAMS structure, which specifies the wordsize
and number of rounds of encryption to use, as well as the initialization vector for cipher
block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to seven null bytes so that the resulting length is a
multiple of eight. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key; the application
must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_ TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_ VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

June 2004 Copyright © 2004 RSA Security Inc.



266 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 81, RC5-CBC: Key And Data Length

Function Key Input Output length Comments
type length
C_Encrypt RC5 multiple of same as input length no final part
blocksize
C_Decrypt RC5 multiple of same as input length no final part
blocksize
C_WrapKey RC5 any input length rounded up to
multiple of blocksize
C_UnwrapKey | RC5 multiple of | determined by type of key
blocksize being unwrapped or
CKA VALUE LEN

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RC5 key sizes, in
bytes.

12.11.7 RC5-CBC with PKCS padding

RC5-CBC with PKCS padding, denoted CKM_RCS_CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on RSA Security’s block cipher RCS; cipher-block chaining mode as defined in
FIPS PUB 81; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RCS5_CBC_PARAMS structure, which specifies the wordsize
and number of rounds of encryption to use, as well as the initialization vector for cipher
block chaining mode.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section 12.6 for details). The entries in the table below for data
length constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 267

Table 82, RC5-CBC with PKCS Padding: Key And Data Length

Function Key Input length Output length
type
C_Encrypt RC5 any input length rounded up to
multiple of blocksize
C_Decrypt RC5 multiple of between 1 and blocksize
blocksize bytes shorter than input
length
C_ WrapKey RC5 any input length rounded up to
multiple of blocksize
C UnwrapKey | RC5 multiple of between 1 and blocksize
blocksize bytes shorter than input
length

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in
bytes.

12.11.8 General-length RC5-MAC

General-length RC5-MAC, denoted CKM_RCS5 MAC_GENERAL, is a mechanism for
single- and multiple-part signatures and verification, based on RSA Security’s block
cipher RC5 and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_RCS5_MAC_GENERAL_PARAMS structure, which specifies
the wordsize and number of rounds of encryption to use and the output length desired
from the mechanism.

The output bytes from this mechanism are taken from the start of the final RCS5 cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 83, General-length RC2-MAC: Key And Data Length

Function Key type | Data length Signature length

C_Sign RC5 any 0-blocksize, as specified in
parameters

C_Verity RC5 any 0-blocksize, as specified in
parameters

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of RC5 key sizes, in
bytes.

June 2004 Copyright © 2004 RSA Security Inc.



268 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.11.9 RC5-MAC

RC5-MAC, denoted by CKM_RC5 MAUC, is a special case of the general-length RC5-
MAC mechanism. Instead of taking a CK_RC5 MAC_GENERAL_PARAMS
parameter, it takes a CK_RCS5_PARAMS parameter. RC5-MAC always produces and
verifies MACs half as large as the RC5 blocksize.

Constraints on key types and the length of data are summarized in the following table:

Table 84, RC5-MAC: Key And Data Length

Function Key type | Data length Signature length
C_Sign RC5 any RC5 wordsize = | blocksize/2
C Verify RC5 any RC5 wordsize = | blocksize/2 |

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of RC5 key sizes, in
bytes.

12.12 AES

For the Advanced Encryption Standard (AES) see [FIPS PUB 197].

12.12.1 Definitions

This section defines the key type “CKK_AES” for type CK_KEY TYPE as used in the
CKA KEY TYPE attribute of key objects.

Mechanisms:

CKM AES_KEY GEN
CKM_AES_ECB
CKM_AES_CBC
CKM_AES_MAC
CKM_AES_MAC GENERAL
CKM_AES_CBC_PAD

12.12.2 AES secret key objects

AES secret key objects (object class CKO_SECRET _KEY, key type CKK_AES) hold
AES keys. The following table defines the AES secret key object attributes, in addition
to the common attributes defined for this object class:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 269

Table 85, AES Secret Key Object Attributes

Attribute Data type Meaning

CKA_ VALUE"**’ Byte array Key value (16, 24, or 32
bytes)

CKA VALUE_LEN*° | CK_ULONG | Length in bytes of key
value

“Refer to table Table 15 for footnotes

The following is a sample template for creating an AES secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_AES;

CK_UTF8CHAR | abel [] “An AES secret key object”;
CK_BYTE value[] = {...};

CK BBOOL true = CK TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA ENCRYPT, &true, sizeof(true)},
CKA VALUE, val ue, sizeof(value)}

¥

CKA CHECK _VALUE: The value of this attribute is derived from the key object by
taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes,
using the default cipher associated with the key type of the secret key object.

12.12.3 AES key generation

The AES key generation mechanism, denoted CKM_AES KEY GEN, is a key
generation mechanism for NIST’s Advanced Encryption Standard.

It does not have a parameter.

The mechanism generates AES keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the AES key type (specifically,
the flags indicating which functions the key supports) may be specified in the template
for the key, or else are assigned default initial values.

June 2004 Copyright © 2004 RSA Security Inc.



270 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in
bytes.

12.12.4 AES-ECB

AES-ECB, denoted CKM_AES ECB, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on NIST
Advanced Encryption Standard and electronic codebook mode.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_ TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_ VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 86, AES-ECB: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of block size
C UnwrapKey | AES multiple of determined by type of key
block size being unwrapped or
CKA VALUE LEN

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of AES key sizes, in
bytes.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 271

12.12.5 AES-CBC

AES-CBC, denoted CKM_AES CBC, is a mechanism for single- and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on NIST’s
Advanced Encryption Standard and cipher-block chaining mode.

It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_ VALUE attribute of the key that is wrapped,
padded on the trailing end with up to block size minus one null bytes so that the resulting
length is a multiple of the block size. The output data is the same length as the padded
input data. It does not wrap the key type, key length, or any other information about the
key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 87, AES-CBC: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt AES multiple of same as input length no final part
block size
C_Decrypt AES multiple of same as input length no final part
block size
C_WrapKey AES any input length rounded up to
multiple of the block size
C UnwrapKey | AES multiple of determined by type of key
block size being unwrapped or
CKA VALUE LEN

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of AES key sizes, in
bytes.

June 2004 Copyright © 2004 RSA Security Inc.



272 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.12.6 AES-CBC with PKCS padding

AES-CBC with PKCS padding, denoted CKM_AES_CBC_PAD, is a mechanism for
single- and multiple-part encryption and decryption; key wrapping; and key unwrapping,
based on NIST’s Advanced Encryption Standard; cipher-block chaining mode; and the
block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section 12.6 for details). The entries in the table below for data
length constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 88, AES-CBC with PKCS Padding: Key And Data Length

Function Key Input length Output length
type
C_Encrypt AES any input length rounded up to
multiple of the block size
C_Decrypt AES multiple of between 1 and block size
block size bytes shorter than input
length
C_WrapKey AES any input length rounded up to
multiple of the block size
C _UnwrapKey | AES multiple of | between 1 and block length
block size bytes shorter than input
length

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of AES key sizes, in
bytes.

12.12.7 General-length AES-MAC

General-length AES-MAC, denoted CKM_AES_MAC_GENERAL, is a mechanism for
single- and multiple-part signatures and verification, based on NIST Advanced

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 273

Encryption Standard as defined in FIPS PUB 197 and data authentication as defined in
FIPS PUB 113.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the
output length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final AES cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 89, General-length AES-MAC: Key And Data Length

Function Key type | Data length Signature length

C_Sign AES any 0-block size, as specified in
parameters

C_Verity AES any 0-block size, as specified in
parameters

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of AES key sizes, in
bytes.

12.12.8 AES-MAC

AES-MAC, denoted by CKM_AES_MAUC, is a special case of the general-length AES-
MAC mechanism. AES-MAC always produces and verifies MACs that are half the block
size in length.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 90, AES-MAC: Key And Data Length

Function Key type | Data length Signature length
C_Sign AES any Y block size (8 bytes)
C Verify AES any 2 block size (8 bytes)

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of AES key sizes, in
bytes.

June 2004 Copyright © 2004 RSA Security Inc.



274 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.13 General block cipher

For brevity’s sake, the mechanisms for the DES, CAST, CAST3, CAST128 (CASTY),
IDEA, and CDMF block ciphers will be described together here. Each of these ciphers
has the following mechanisms, which will be described in a templatized form.

12.13.1 Definitions

This section defines the key types “CKK DES”, “CKK CAST”, “CKK _CAST3”,
“CKK _CAST5” (deprecated in v2.11), “CKK CASTI128”, “CKK IDEA” and
“CKK_CDMEF” for type CK_KEY TYPE as used in the CKA KEY TYPE attribute of
key objects.

Mechanisms:

CKM DES_KEY_GEN
CKM DES_ECB
CKM_DES_CBC
CKM_DES_MAC
CKM_DES_MAC_GENERAL
CKM_DES_CBC_PAD
CKM_CDMF_KEY GEN
CKM_CDVF_ECB
CKM_CDMF_CBC
CKM_CDVF_MAC
CKM_CDVF_MAC_GENERAL
CKM_CDVF_CBC_PAD
CKM_DES_OFB64
CKM_DES_OFBS
CKM_DES_CFB64
CKM_DES_CFBS8
CKM_CAST_KEY_GEN
CKM_CAST_ECB
CKM_CAST_CBC
CKM_CAST_MAC
CKM_CAST_MAC_GENERAL
CKM_CAST_CBC_PAD
CKM_CAST3_KEY_ GEN
CKM_CAST3_ECB
CKM_CAST3_CBC
CKM_CAST3_MAC
CKM_CAST3_MAC_GENERAL
CKM_CAST3_CBC_PAD
CKM_CAST5_KEY_GEN
CKM_CAST128 KEY_ GEN
CKM_CAST5_ECB
CKM_CAST128 ECB
CKM_CAST5_CBC

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS

CKM CAST128 CBC
CKM_CAST5_MAC
CKM_CAST128_MAC
CKM_CAST5_MAC_GENERAL
CKM_CAST128 MAC_GENERAL
CKM_CAST5_CBC_PAD
CKM_CAST128_CBC_PAD
CKM_ | DEA KEY GEN
CKM_| DEA_ECB

CKM_| DEA_CBC

CKM_| DEA_MAC

CKM_ | DEA_MAC_GENERAL
CKM_| DEA_CBC_PAD

12.13.2 DES secret key objects

275

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hold
single-length DES keys. The following table defines the DES secret key object

attributes, in addition to the common attributes defined for this object class:

Table 91, DES Secret Key Object

Attribute Data type Meaning
CKA_VALUE'"**" | Byte array Key value (always 8 bytes
long)

“Refer to table Table 15 for footnotes

DES keys must always have their parity bits properly set as described in FIPS PUB 46-3.

Attempting to create or unwrap a DES key with incorrect parity will return an error.

The following is a sample template for creating a DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_UTF8CHAR | abel [] = “A DES secret key object”;
CK BYTE value[8] ={...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

June 2004 Copyright © 2004 RSA Security Inc.



276 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKA CHECK VALUE: The value of this attribute is derived from the key object by
taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes,
using the default cipher associated with the key type of the secret key object.

12.13.3 CAST secret key objects

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST)
hold CAST keys. The following table defines the CAST secret key object attributes, in
addition to the common attributes defined for this object class:

Table 92, CAST Secret Key Object Attributes

Attribute Data type Meaning

CKA VALUE'**’ Byte array | Key value (1 to 8 bytes)

CKA_VALUE LEN**® | CK_ULONG | Length in bytes of key
value

“Refer to table Table 15 for footnotes

The following is a sample template for creating a CAST secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_CAST;
CK_UTF8CHAR | abel [] “A CAST secret key object”;
CK_BYTE value[] = {...};
CK BBOOL true = CK _TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA _ENCRYPT, &true, sizeof(true)},
CKA VALUE, val ue, sizeof(value)}

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 277

12.13.4 CAST3 secret key objects

CAST3 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST3)
hold CAST3 keys. The following table defines the CAST3 secret key object attributes, in
addition to the common attributes defined for this object class:

Table 93, CAST3 Secret Key Object Attributes

Attribute Data type Meaning

CKA_ VALUE"**’ Byte array Key value (1 to 8 bytes)

CKA VALUE LEN*** | CK_ULONG | Length in bytes of key
value

“Refer to table Table 15 for footnotes

The following is a sample template for creating a CAST3 secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK _CAST3;
CK_UTF8CHAR | abel [] “A CAST3 secret key object”;
CK_BYTE value[] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA ENCRYPT, &true, sizeof(true)},
CKA VALUE, val ue, sizeof(value)}

3
12.13.5 CAST128 (CASTS) secret key objects

CAST128 (also known as CASTS) secret key objects (object class
CKO_SECRET_KEY, key type CKK CAST128 or CKK_CASTS5) hold CAST128
keys. The following table defines the CAST128 secret key object attributes, in addition
to the common attributes defined for this object class:

Table 94, CAST128 (CASTS) Secret Key Object Attributes

Attribute Data type Meaning

CKA_ VALUE"*®’ Byte array Key value (1 to 16
bytes)

CKA VALUE_LEN**° | CK_ULONG | Length in bytes of key
value

“Refer to table Table 15 for footnotes

The following is a sample template for creating a CAST128 (CASTS5) secret key object:

June 2004 Copyright © 2004 RSA Security Inc.



278 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST128;
CK_UTF8CHAR | abel [] = “A CAST128 secret key object”;
CK_BYTE value[] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof (value)}

i
12.13.6 IDEA secret key objects
IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA)

hold IDEA keys. The following table defines the IDEA secret key object attributes, in
addition to the common attributes defined for this object class:

Table 95, IDEA Secret Key Object

Attribute Data type | Meaning
CKA VALUE'"*®" | Byte array | Key value (always 16 bytes
long)

“Refer to table Table 15 for footnotes

The following is a sample template for creating an IDEA secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_| DEA;
CK_UTF8CHAR | abel [] “An | DEA secret key object”;
CK_BYTE val ue[16] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA ENCRYPT, &true, sizeof(true)},
CKA VALUE, val ue, sizeof(value)}

i
12.13.7 CDMF secret key objects
CDMF secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMF)

hold single-length CDMF keys. The following table defines the CDMF secret key object
attributes, in addition to the common attributes defined for this object class:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 279

Table 96, CDMF Secret Key Object

Attribute Data type | Meaning
CKA VALUE"*®” | Byte array | Key value (always 8 bytes
long)

“Refer to table Table 15 for footnotes

CDMF keys must always have their parity bits properly set in exactly the same fashion
described for DES keys in FIPS PUB 46-3. Attempting to create or unwrap a CDMF key
with incorrect parity will return an error.

The following is a sample template for creating a CDMF secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CDMF,;

CK_UTF8CHAR | abel [] “A CDVF secret key object”;
CK_BYTE value[8] = {...};

CK_ BBOOL true = CK_TRUE;

CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA ENCRYPT, &true, sizeof(true)},
CKA VALUE, val ue, sizeof(value)}

b

12.13.8 General block cipher mechanism parameters

¢ CK_MAC_GENERAL_PARAMS; CK_ MAC_GENERAL_PARAMS_PTR

CK_MAC_GENERAL_PARAMS provides the parameters to the general-length
MACing mechanisms of the DES, DES3 (triple-DES), CAST, CAST3, CASTI128
(CASTS), IDEA, CDMF and AES ciphers. It also provides the parameters to the general-
length HMACing mechanisms (i.e. MD2, MD5, SHA-1, SHA-256, SHA-384, SHA-512,
RIPEMD-128 and RIPEMD-160) and the two SSL 3.0 MACing mechanisms (i.e. MD5
and SHA-1). It holds the length of the MAC that these mechanisms will produce. It is
defined as follows:

typedef CK_ULONG CK_MAC GENERAL_PARANS:;

CK_MAC_GENERAL_PARAMS PTR is a pointer to a
CK_MAC_GENERAL_PARAMS.

June 2004 Copyright © 2004 RSA Security Inc.



280 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.13.9 General block cipher key generation

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”, denoted
CKM_<NAME> KEY_GEN.

This mechanism does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA VALUE
attributes to the new key. Other attributes supported by the key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for
the key, or else are assigned default initial values.

When DES keys or CDMF keys are generated, their parity bits are set properly, as
specified in FIPS PUB 46-3. Similarly, when a triple-DES key is generated, each of the
DES keys comprising it has its parity bits set properly.

When DES or CDMF keys are generated, it is token-dependent whether or not it is
possible for “weak” or “semi-weak” keys to be generated. Similarly, when triple-DES
keys are generated, it is token dependent whether or not it is possible for any of the
component DES keys to be “weak” or “semi-weak” keys.

When CAST, CAST3, or CAST128 (CASTS5) keys are generated, the template for the
secret key must specify a CKA_VALUE_LEN attribute.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CASTI128 (CASTS) ciphers have variable key sizes, and so for the key generation
mechanisms for these ciphers, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes.
For the DES, DES3 (triple-DES), IDEA, and CDMF ciphers, these fields are not used.

12.13.10 General block cipher ECB

Cipher <NAME> has an electronic codebook mechanism, “<NAME>-ECB”, denoted
CKM_<NAME>_ECB. It is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may
not be able to wrap/unwrap every secret key that it supports. For wrapping, the
mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped,
padded on the trailing end with null bytes so that the resulting length is a multiple of
<NAME>’s blocksize. The output data is the same length as the padded input data. It
does not wrap the key type, key length or any other information about the key; the
application must convey these separately.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 281

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result
according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the
key type supports it, the CKA VALUE_LEN attribute of the template. The mechanism
contributes the result as the CKA_VALUE attribute of the new key; other attributes
required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 97, General Block Cipher ECB: Key And Data Length

Function Key type Input Output length Comments
length
C_Encrypt <NAME> | multiple of same as input length no final
blocksize part
C_Decrypt <NAME> | multiple of same as input length no final
blocksize part
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C UnwrapKey | <NAME> any determined by type of key
being unwrapped or
CKA VALUE LEN

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CASTI128 (CASTS) ciphers have variable key sizes, and so for these ciphers, the
ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM INFO structure
specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES),
IDEA, and CDMF ciphers, these fields are not used.

12.13.11 General block cipher CBC

Cipher <NAME> has a cipher-block chaining mode, “<NAME>-CBC”, denoted
CKM_<NAME>_CBC. It is a mechanism for single- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It has a parameter, an initialization vector for cipher block chaining mode. The
initialization vector has the same length as <NAME>’s blocksize.

Constraints on key types and the length of data are summarized in the following table:

June 2004 Copyright © 2004 RSA Security Inc.



282 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 98, General Block Cipher CBC: Key And Data Length

Function Key type Input Output length Comments
length
C_Encrypt <NAME> | multiple of same as input length no final
blocksize part
C Decrypt <NAME> | multiple of same as input length no final
blocksize part
C_WrapKey <NAME> any input length rounded up to
multiple of blocksize
C _UnwrapKey | <NAME> any determined by type of key
being unwrapped or
CKA VALUE LEN

For this mechanism, the ul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CASTS5) ciphers have variable key sizes, and so for these ciphers, the
ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES),
IDEA, and CDMF ciphers, these fields are not used.

12.13.12 General block cipher CBC with PKCS padding

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-
CBC with PKCS padding”, denoted CKM_<NAME>_CBC_PAD. It is a mechanism
for single- and multiple-part encryption and decryption; key wrapping; and key
unwrapping with <NAME>. All ciphertext is padded with PKCS padding.

It has a parameter, an initialization vector for cipher block chaining mode. The
initialization vector has the same length as <NAME>’s blocksize.

The PKCS padding in this mechanism allows the length of the plaintext value to be
recovered from the ciphertext value. Therefore, when unwrapping keys with this
mechanism, no value should be specified for the CKA VALUE LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and
unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and
DSA private keys (see Section 12.6 for details). The entries in the table below for data
length constraints when wrapping and unwrapping keys do not apply to wrapping and
unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 283

Table 99, General Block Cipher CBC with PKCS Padding: Key And Data Length

Function Key type Input Output length
length
C_Encrypt <NAME> any input length rounded up to
multiple of blocksize
C_Decrypt <NAME> | multiple of | between 1 and blocksize
blocksize bytes shorter than input
length
C_ WrapKey <NAME> any input length rounded up to
multiple of blocksize
C UnwrapKey | <NAME> | multiple of | between 1 and blocksize
blocksize bytes shorter than input
length

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CASTS) ciphers have variable key sizes, and so for these ciphers, the
ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES),
IDEA, and CDMF ciphers, these fields are not used.

12.13.13 General-length general block cipher MAC

Cipher <NAME> has a general-length MACing mode, “General-length <NAME>-
MAC”, denoted CKM_<NAME> MAC_GENERAL. It is a mechanism for single- and
multiple-part signatures and verification, based on the <NAME> encryption algorithm
and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the size of the
output.

The output bytes from this mechanism are taken from the start of the final cipher block
produced in the MACing process.

Constraints on key types and the length of input and output data are summarized in the
following table:

June 2004 Copyright © 2004 RSA Security Inc.



284

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 100, General-length General Block Cipher MAC: Key And Data Length

Function Key type | Data length Signature length
C Sign <NAME> any 0-blocksize, depending on
parameters
C Verify <NAME> any 0-blocksize, depending on
parameters
For this mechanism, the wulMinKeySize and ulMaxKeySize fields

of the

CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CASTS) ciphers have variable key sizes, and so for these ciphers, the
ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES),
IDEA, and CDMF ciphers, these fields are not used.

12.13.14 General block cipher MAC
Cipher <NAME> has a MACing mechanism, “<NAME>-MAC”, denoted
CKM_<NAME> MAC. This mechanism is a special case of the

CKM_<NAME> MAC_GENERAL mechanism described above. It always produces
an output of size half as large as <NAME>’s blocksize.

This mechanism has no parameters.

Constraints on key types and the length of data are summarized in the following table:

Table 101, General Block Cipher MAC: Key And Data Length

Function Key type | Data length Signature length
C_Sign <NAME> any | blocksize/2 ]
C_Verity <NAME> any | blocksize/2 ]
For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the

CK_MECHANISM_INFO structure may or may not be used. The CAST, CAST3, and
CAST128 (CASTS) ciphers have variable key sizes, and so for these ciphers, the
ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure
specify the supported range of key sizes, in bytes. For the DES, DES3 (triple-DES),
IDEA, and CDMF ciphers, these fields are not used.

12.14 Key derivation by data encryption — DES & AES

These mechanisms allow derivation of keys using the result of an encryption operation as
the key value. They are for use with the C_DeriveKey function.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS

12.14.1 Definitions

Mechanisms:

CKM DES_ECB_ENCRYPT_DATA
CKM_DES_CBC_ENCRYPT_DATA
CKM DES3_ECB_ENCRYPT DATA
CKM_DES3_CBC_ENCRYPT_DATA
CKM_AES_ECB_ENCRYPT_DATA
CKM_AES_CBC_ENCRYPT_DATA

285

typedef struct CK _DES CBC_ENCRYPT_DATA PARAMNS {

CK_BYTE iv[8];
CK_BYTE_PTR pbDat a;
CK_ULONG | engt h;

} CK_DES_CBC ENCRYPT DATA_ PARANS;
t ypedef CK_DES_CBC ENCRYPT DATA PARAMS CK_PTR
CK_DES_CBC_ENCRYPT_DATA_PARAMS_PTR;

typedef struct CK_AES CBC_ENCRYPT_DATA PARAMS {

CK_BYTE i v[ 16];
CK_BYTE_PTR pbDat a;
CK_ULONG | engt h;

} CK_AES_CBC ENCRYPT DATA PARAMNS;
t ypedef CK_DES_CBC ENCRYPT DATA PARAMS CK_PTR
CK_DES_CBC_ENCRYPT_DATA_PARAMS_PTR;

12.14.2 Mechanism Parameters

Uses CK_KEY DERIVATION STRING

Table 102, Mechanism Parameters

- DATA as defined in section 12.34.2

CKM_DES_ECB_ENCRYPT DATA
CKM DES3 ECB_ENCRYPT DATA

Uses

CK_KEY DERIVATION STRING DATA
structure. Parameter is the data to be encrypted
and must be a multiple of 8 bytes long.

CKM_AES_ECB_ENCRYPT DATA

Uses

CK _KEY DERIVATION STRING DATA
structure. Parameter is the data to be encrypted
and must be a multiple of 16 long.

CKM_DES_CBC_ENCRYPT DATA
CKM DES3 CBC_ENCRYPT DATA

Uses

CK DES CBC_ENCRYPT DATA PARAMS.
Parameter is an 8 byte IV value followed by the
data. The data value part must be a multiple of 8
bytes long.

CKM_AES_CBC _ENCRYPT DATA

Uses
CK AES CBC ENCRYPT DATA PARAMS.

June 2004

Copyright © 2004 RSA Security Inc.




286 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Parameter is an 16 byte IV value followed by
the data. The data value part

must be a multiple of 16 bytes long.

12.14.3 Mechanism Description

The mechanisms will function by performing the encryption over the data provided using
the base key. The resulting cipher text shall be used to create the key value of the
resulting key. If not all the cipher text is used then the part discarded will be from the
trailing end (least significant bytes) of the cipher text data. The derived key shall be
defined by the attribute template supplied but constrained by the length of cipher text
available for the key value and other normal PKCS11 derivation constraints.

Attribute template handling, attribute defaulting and key value preparation will operate as
per the SHA-1 Key Derivation mechanism in section 12.21.5.

If the data is too short to make the requested key then the mechanism returns
CKR DATA LENGTH INVALID.

12.15 Double and Triple-length DES

12.15.1 Definitions

This section defines the key type “CKK DES2” and “CKK DES3” for type
CK KEY TYPE as used in the CKA KEY TYPE attribute of key objects.

Mechanisms:

CKM DES2_KEY_GEN
CKM DES3_KEY_GEN

CKM _DES3_ECB
CKM_DES3_CBC
CKM_DES3_MAC
CKM_DES3_MAC_GENERAL
CKM_DES3_CBC_PAD

Copyright © 2004 RSA Security Inc. June 2004




12. MECHANISMS 287

12.15.2 DES?2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2)
hold double-length DES keys. The following table defines the DES2 secret key object
attributes, in addition to the common attributes defined for this object class:

Table 103, DES2 Secret Key Object Attributes

Attribute Data type | Meaning
CKA VALUE'"**” | Byte array | Key value (always 16 bytes
long)

“Refer to table Table 15 for footnotes

DES?2 keys must always have their parity bits properly set as described in FIPS PUB 46-3
(i.e., each of the DES keys comprising a DES2 key must have its parity bits properly set).
Attempting to create or unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_DESZ;

CK_UTF8CHAR | abel [] “A DES2 secret key object”;
CK_BYTE val ue[16] = {...};

CK_ BBOOL true = CK_TRUE;

CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA ENCRYPT, &true, sizeof(true)},
CKA VALUE, val ue, sizeof(value)}

b

CKA CHECK VALUE: The value of this attribute is derived from the key object by
taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes,
using the default cipher associated with the key type of the secret key object.

June 2004 Copyright © 2004 RSA Security Inc.



288 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.15.3 DES3 secret key objects

DES3 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3)
hold triple-length DES keys. The following table defines the DES3 secret key object
attributes, in addition to the common attributes defined for this object class:

Table 104, DES3 Secret Key Object Attributes

Attribute Data type | Meaning
CKA VALUE'"**” | Byte array | Key value (always 24 bytes
long)

“Refer to table Table 15 for footnotes

DES3 keys must always have their parity bits properly set as described in FIPS PUB 46-3
(i.e., each of the DES keys comprising a DES3 key must have its parity bits properly set).
Attempting to create or unwrap a DES3 key with incorrect parity will return an error.

The following is a sample template for creating a triple-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_DESS;

CK_UTF8CHAR | abel [] “A DES3 secret key object”;
CK_BYTE value[24] = {...};

CK_ BBOOL true = CK_TRUE;

CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

b

CKA CHECK VALUE: The value of this attribute is derived from the key object by
taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes,
using the default cipher associated with the key type of the secret key object.

12.154 Double-length DES key generation

The double-length DES key generation mechanism, denoted CKM_DES2 KEY_ GEN,
is a key generation mechanism for double-length DES keys. The DES keys making up a
double-length DES key both have their parity bits set properly, as specified in FIPS PUB
46-3.

It does not have a parameter.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 289

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the double-length DES key type
(specifically, the flags indicating which functions the key supports) may be specified in
the template for the key, or else are assigned default initial values.

Double-length DES keys can be used with all the same mechanisms as triple-DES keys:
CKM_DES3 ECB, CKM_DES3 _CBC, CKM_DES3 CBC_PAD,
CKM_DES3 MAC_GENERAL, and CKM_DES3 MAC (these mechanisms are
described in templatized form in Section 12.13. Triple-DES encryption with a double-
length DES key is equivalent to encryption with a triple-length DES key with K1=K3 as
specified in FIPS PUB 46-3.

When double-length DES keys are generated, it is token-dependent whether or not it is
possible for either of the component DES keys to be “weak” or “semi-weak” keys.
12.15.5 Triple-length DES Order of Operations

Triple-length DES encryptions are carried out as specified in FIPS PUB 46-3: encrypt,
decrypt, encrypt. Decryptions are carried out with the opposite three steps: decrypt,
encrypt, decrypt. The mathematical representations of the encrypt and decrypt operations
are as follows:

DES3-E( {K1,K2,K3},P)=E(K3,D(K2,E(KI,P)))

DES3-D( {K1,K2,K3},C)=D(KI, E(K2,D(K3,P)))

12.15.6 Triple-length DES in CBC Mode

Triple-length DES operations in CBC mode, with double or triple-length keys, are
performed using outer CBC as defined in X9.52. X9.52 describes this mode as TCBC.
The mathematical representations of the CBC encrypt and decrypt operations are as
follows:

DES3-CBC-E( {K1,K2,K3}, P)=E(K3, D(K2, E(KI],P+1)))
DES3-CBC-D( {K1,K2,K3},C)=D(KI, E(K2, D(K3,P)))+]1

The value 7 is either an 8-byte initialization vector or the previous block of cipher text
that is added to the current input block. The addition operation is used is addition
modulo-2 (XOR).

June 2004 Copyright © 2004 RSA Security Inc.



290

12.15.7

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

DES and Triple length DES in OFB Mode

Cipher DES has a output feedback mode, DES-OFB, denoted CKM_DES OFBS8 and

CKM_DES_OFB64.

decryption with DES.

It is a mechanism for single and multiple-part encryption and

It has a parameter, an initialization vector for this mode. The initialization vector has the
same length as the blocksize.

Constraints on key types and the length of data are summarized in the following table:

Table 105, OFB: Key And Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK _DES, any same as input length no final
CKK DES2, part
CKK DES3

C_Decrypt CKK DES, any same as input length no final
CKK DES2, part
CKK DES3

For this mechanism the CK_MECHANISM_INFO structure is as specified for CBC

mode.

12.15.8

DES and Triple length DES in CFB Mode

Cipher DES has a cipher feedback mode, DES-CFB, denoted CKM_DES_CFB8 and

CKM_DES_CFB64.

decryption with DES.

It is a mechanism for single and multiple-part encryption and

It has a parameter, an initialization vector for this mode. The initialization vector has the
same length as the blocksize.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2004 RSA Security Inc.

June 2004



12. MECHANISMS 291

Table 106, CFB: Key And Data Length

Function Key type Input Output length Comments
length

C_Encrypt CKK DES, any same as input length no final
CKK DES2, part
CKK DES3

C Decrypt CKK DES, any same as input length no final
CKK_DES2, part
CKK DES3

For this mechanism the CK_MECHANISM _INFO structure is as specified for CBC
mode.

12.16 SKIPJACK

12.16.1 Definitions

This section defines the key type “CKK SKIPJACK” for type CK_KEY TYPE as used
in the CKA KEY_ TYPE attribute of key objects.

Mechanisms:

CKM _SKI PJACK_KEY_GEN
CKM_SKI PJACK_ECB64

CKM_SKI PJACK_CBC64

CKM_SKI PJACK_OFB64

CKM_SKI PJACK_CFB64

CKM_SKI PJACK_CFB32

CKM_SKI PJACK_CFB16

CKM_SKI PJACK_CFB8

CKM_SKI PJACK_V\RAP

CKM_SKI PJACK_PRI VATE_\\RAP
CKM_SKI PJACK_RELAYX

June 2004 Copyright © 2004 RSA Security Inc.



292 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.16.2 SKIPJACK secret key objects

SKIPJACK secret key objects (object class CKO_SECRET KEY, key type
CKK_SKIPJACK) holds a single-length MEK or a TEK. The following table defines
the SKIPJACK secret key object attributes, in addition to the common attributes defined
for this object class:

Table 107, SKIPJACK Secret Key Object

Attribute Data type | Meaning
CKA VALUE'"**” | Byte array | Key value (always 12 bytes
long)

“Refer to table Table 15 for footnotes

SKIPJACK keys have 16 checksum bits, and these bits must be properly set. Attempting
to create or unwrap a SKIPJACK key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a SKIPJACK key with a specified value. Nonetheless, we provide templates for
doing so.

The following is a sample template for creating a SKIPJACK MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_SKI PJACK;

CK_UTF8CHAR | abel [] “A SKI PJACK MEK secret key object”;
CK _BYTE val ue[12] = {...};

CK BBOOL true = CK TRUE

CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA_LABEL, | abel, sizeof (Il abel)-1},
CKA ENCRYPT, &true, sizeof(true)},
CKA VALUE, val ue, sizeof(value)}

3
The following is a sample template for creating a SKIPJACK TEK secret key object:

CK_OBJECT _CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_SKI PJACK;
CK_UTF8CHAR | abel [] “A SKI PJACK TEK secret key object”;
CK_BYTE val ue[12] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 293

{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof (value)}

b

12.16.3 SKIPJACK Mechanism parameters

¢ CK_SKIPJACK_PRIVATE_WRAP_PARAMS;
CK_SKIPJACK_PRIVATE_WRAP_PARAMS_PTR

CK SKIPJACK PRIVATE WRAP PARAMS is a structure that provides the
parameters to the CKM_SKIPJACK PRIVATE WRAP mechanism. It is defined as
follows:

typedef struct CK_SKI PJACK PRI VATE WRAP_PARAMS {
CK_ULONG ul Passwor dLen;
CK_BYTE_PTR pPasswor d;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul PandGL.en;
CK_ULONG ul QLen;
CK_ULONG ul Randonien;
CK_BYTE_PTR pRandoni;
CK_BYTE_PTR pPri neP;
CK_BYTE_PTR pBaseG
CK_BYTE_PTR pSubpri meQ

}  CK_SKI PJACK_PRI VATE_WRAP_PARANS:

The fields of the structure have the following meanings:
ulPasswordLen length of the password

pPassword  pointer to the buffer which contains the user-supplied
password

ulPublicDatalLen other party’s key exchange public key size
pPublicData  pointer to other party’s key exchange public key value
ulPandGLen  length of prime and base values
ulQLen length of subprime value
ulRandomlLen size of random Ra, in bytes

pRandomA pointer to Ra data

June 2004 Copyright © 2004 RSA Security Inc.



294 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

pPrimeP  pointer to Prime, p, value
pBaseG  pointer to Base, g, value
pSubprime(Q)  pointer to Subprime, q, value

CK_SKIPJACK_PRIVATE_WRAP PARAMS PTR is a pointer to a
CK_PRIVATE_WRAP PARAMS.

¢ CK_SKIPJACK RELAYX PARAMS;
CK_SKIPJACK_RELAYX PARAMS PTR

CK_SKIPJACK_RELAYX PARAMS is a structure that provides the parameters to the
CKM_SKIPJACK_ _RELAYX mechanism. It is defined as follows:

typedef struct CK_SKI PJACK RELAYX PARAMS {
CK_ULONG ul A dW appedXLen;
CK_BYTE_PTR pd dW appedX;
CK_ULONG ul d dPasswor dLen;
CK_BYTE_PTR pd dPasswor d;
CK_ULONG ul d dPubl i cDat aLen;
CK_BYTE_PTR pd dPubl i cDat a;
CK_ULONG ul d drRandonlien;
CK_BYTE_PTR pQ dRandomA;
CK_ULONG ul NewPasswor dLen;
CK_BYTE_PTR pNewPasswor d;
CK_ULONG ul NewPubl i cDat aLen;
CK_BYTE_PTR pNewPubl i cDat a;
CK_ULONG ul NewRandonien;
CK_BYTE_PTR pNewRandomA;

} CK_SKI PJACK RELAYX PARAMS;

The fields of the structure have the following meanings:
ulOldWrappedXLen length of old wrapped key in bytes
pOIldWrappedX  pointer to old wrapper key
ulOldPasswordLen length of the old password

pOldPassword  pointer to the buffer which contains the old user-
supplied password

ulOldPublicDatalLen old key exchange public key size
pOIldPublicData pointer to old key exchange public key value

ulOldRandomLen size of old random Ra in bytes

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 295

pOIldRandomA pointer to old Ra data
ulNewPasswordLen  length of the new password

pNewPassword  pointer to the buffer which contains the new user-
supplied password

ulNewPublicDataLen new key exchange public key size
pNewPublicData pointer to new key exchange public key value
ulNewRandomlLen size of new random Ra in bytes
pNewRandomA pointer to new Ra data
CK_SKIPJACK RELAYX PARAMS PTR is a pointer to a
CK_SKIPJACK_RELAYX PARAMS.
12.16.4 SKIPJACK key generation

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK KEY GEN, is
a key generation mechanism for SKIPJACK. The output of this mechanism is called a
Message Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_ VALUE
attributes to the new key.

12.16.5 SKIPJACK-ECB64

SKIPJACK-ECB64, denoted CKM_SKIPJACK_ECB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit electronic
codebook mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

June 2004 Copyright © 2004 RSA Security Inc.



296 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 108, SKIPJACK-ECB64: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK | multiple of 8 | same as input length | no final part

C Decrypt SKIPJACK | multiple of 8 | same as input length | no final part

12.16.6 SKIPJACK-CBC64

SKIPJACK-CBC64, denoted CKM_SKIPJACK CBC64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit cipher-block
chaining mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 109, SKIPJACK-CBC64: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK | multiple of 8 | same as input length | no final part

C_Decrypt SKIPJACK | multiple of 8 | same as input length | no final part

12.16.7 SKIPJACK-OFB64

SKIPJACK-OFB64, denoted CKM_SKIPJACK OFB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit output feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when

decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 297

Table 110, SKIPJACK-OFB64: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK | multiple of 8 | same as input length | no final part
C Decrypt SKIPJACK | multiple of 8 | same as input length | no final part

12.16.8 SKIPJACK-CFB64

SKIPJACK-CFB64, denoted CKM_SKIPJACK CFB64, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 64-bit cipher feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 111, SKIPJACK-CFB64: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK | multiple of 8 | same as input length | no final part

C_Decrypt SKIPJACK | multiple of 8 | same as input length | no final part

12.16.9 SKIPJACK-CFB32

SKIPJACK-CFB32, denoted CKM_SKIPJACK_ CFB32, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 32-bit cipher feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when

decrypting.

Constraints on key types and the length of data are summarized in the following table:

June 2004 Copyright © 2004 RSA Security Inc.



298 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 112, SKIPJACK-CFB32: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK | multiple of 4 | same as input length | no final part

C Decrypt SKIPJACK | multiple of 4 | same as input length | no final part

12.16.10 SKIPJACK-CFB16

SKIPJACK-CFB16, denoted CKM_SKIPJACK CFB16, is a mechanism for single-
and multiple-part encryption and decryption with SKIPJACK in 16-bit cipher feedback
mode as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 113, SKIPJACK-CFB16: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK | multiple of 4 | same as input length | no final part

C_Decrypt SKIPJACK | multiple of 4 | same as input length | no final part

12.16.11 SKIPJACK-CFBS8

SKIPJACK-CFBS8, denoted CKM_SKIPJACK_CFBS8, is a mechanism for single- and
multiple-part encryption and decryption with SKIPJACK in 8-bit cipher feedback mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when

decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 299

Table 114, SKIPJACK-CFBS8: Data and Length

Function Key type Input length Output length Comments

C_Encrypt SKIPJACK | multiple of 4 | same as input length | no final part

C Decrypt SKIPJACK | multiple of 4 | same as input length | no final part

12.16.12 SKIPJACK-WRAP

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK WRAP, is used to
wrap and unwrap a secret key (MEK). It can wrap or unwrap SKIPJACK, BATON, and
JUNIPER keys.

It does not have a parameter.

12.16.13 SKIPJACK-PRIVATE-WRAP

The SKIPJACK-PRIVATE-WRAP mechanism, denoted
CKM_SKIPJACK PRIVATE_ WRAP, is used to wrap and unwrap a private key. It
can wrap KEA and DSA private keys.

It has a parameter, a CK_SKIPJACK PRIVATE_WRAP_PARAMS structure.

12.16.14 SKIPJACK-RELAYX

The SKIPJACK-RELAYX mechanism, denoted CKM_SKIPJACK_RELAYX, is used
with the C_WrapKey function to “change the wrapping” on a private key which was
wrapped with the SKIPJACK-PRIVATE-WRAP mechanism (see Section 12.16.13).

It has a parameter, a CK_SKIPJACK RELAYX_ PARAMS structure.

Although the SKIPJACK-RELAYX mechanism is used with C_WrapKey, it differs
from other key-wrapping mechanisms. Other key-wrapping mechanisms take a key
handle as one of the arguments to C_WrapKey; however, for the SKIPJACK RELAYX
mechanism, the [always invalid] value O should be passed as the key handle for
C WrapKey, and the already-wrapped key should be passed in as part of the
CK_SKIPJACK RELAYX PARAMS structure.

12.17 BATON

12.17.1 Definitions

This section defines the key type “CKK BATON” for type CK KEY TYPE as used in
the CKA KEY TYPE attribute of key objects.

June 2004 Copyright © 2004 RSA Security Inc.



300 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Mechanisms:

CKM BATON KEY_GEN
CKM_BATON_ECB128
CKM_BATON_ECB96
CKM_BATON_CBC128
CKM_BATON_COUNTER
CKM_BATON_SHUFFLE
CKM_BATON_WRAP

12.17.2 BATON secret key objects

BATON secret key objects (object class CKO_SECRET_KEY, key type
CKK_BATON) hold single-length BATON keys. The following table defines the
BATON secret key object attributes, in addition to the common attributes defined for this
object class:

Table 115, BATON Secret Key Object

Attribute Data type | Meaning
CKA VALUE'"®" | Byte array | Key value (always 40 bytes
long)

“Refer to table Table 15 for footnotes

BATON keys have 160 checksum bits, and these bits must be properly set. Attempting
to create or unwrap a BATON key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a BATON key with a specified value. Nonetheless, we provide templates for
doing so.

The following is a sample template for creating a BATON MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK _BATON;
CK_UTF8CHAR | abel [] = “A BATON MEK secret key object”;
CK_BYTE val ue[40] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof (value)}

b

The following is a sample template for creating a BATON TEK secret key object:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 301

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_ BATON;
CK_UTF8CHAR | abel [] = “A BATON TEK secret key object”;
CK_BYTE val ue[40] = {...};
CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (Il abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

b
12.17.3 BATON key generation

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is a key
generation mechanism for BATON. The output of this mechanism is called a Message
Encryption Key (MEK).

It does not have a parameter.

This mechanism contributes the CKA CLASS, CKA KEY _TYPE, and CKA VALUE
attributes to the new key.

12.17.4 BATON-ECB128

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 128-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

June 2004 Copyright © 2004 RSA Security Inc.



302 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 116, BATON-ECB128: Data and Length

Function Key type Input length Output length Comments

C_Encrypt BATON multiple of 16 | same as input length | no final part

C Decrypt BATON multiple of 16 | same as input length | no final part

12.17.5 BATON-ECB96

BATON-ECB96, denoted CKM_BATON_ ECB96, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 96-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 117, BATON-ECB96: Data and Length

Function Key type Input length Output length Comments

C_Encrypt BATON multiple of 12 | same as input length | no final part

C_Decrypt BATON multiple of 12 | same as input length | no final part

12.17.6 BATON-CBC128

BATON-CBCI128, denoted CKM_BATON_CBC128, is a mechanism for single- and
multiple-part encryption and decryption with BATON in 128-bit cipher-block chaining
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when

decrypting.

Constraints on key types and the length of data are summarized in the following table:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 303

Table 118, BATON-CBC128: Data and Length

Function Key type | Inputlength Output length Comments

C_Encrypt BATON | multiple of 16 | same as input length | no final part
C Decrypt BATON | multiple of 16 | same as input length | no final part

12.17.7 BATON-COUNTER

BATON-COUNTER, denoted CKM_BATON_COUNTER, is a mechanism for single-
and multiple-part encryption and decryption with BATON in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

Table 119, BATON-COUNTER: Data and Length

Function Key type | Inputlength Output length Comments

C_Encrypt BATON | multiple of 16 | same as input length | no final part

C_Decrypt BATON | multiple of 16 | same as input length | no final part

12.17.8 BATON-SHUFFLE

BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechanism for single-
and multiple-part encryption and decryption with BATON in shuffle mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table:

June 2004 Copyright © 2004 RSA Security Inc.



304 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 120, BATON-SHUFFLE: Data and Length

Function Key type | Inputlength Output length Comments

C_Encrypt BATON | multiple of 16 | same as input length | no final part
C Decrypt BATON | multiple of 16 | same as input length | no final part

12.17.9 BATON WRAP

The BATON wrap and unwrap mechanism, denoted CKM_BATON WRAP, is a
function used to wrap and unwrap a secret key (MEK). It can wrap and unwrap
SKIPJACK, BATON, and JUNIPER keys.

It has no parameters.

When used to unwrap a key, this mechanism contributes the CKA CLASS,
CKA KEY _TYPE, and CKA VALUE attributes to it.

12.18 JUNIPER

12.18.1 Definitions

This section defines the key type “CKK_JUNIPER” for type CK_KEY TYPE as used in
the CKA KEY TYPE attribute of key objects.

Mechanisms:

CKM JUNI PER_KEY_GEN
CKM_JUNI PER_ECB128
CKM_JUNI PER_CBC128
CKM_JUNI PER_COUNTER
CKM_JUNI PER_SHUFFLE
CKM_JUNI PER_WRAP

12.18.2 JUNIPER secret key objects

JUNIPER secret key objects (object class CKO SECRET _KEY, key type
CKK_JUNIPER) hold single-length JUNIPER keys. The following table defines the
JUNIPER secret key object attributes, in addition to the common attributes defined for
this object class:

Table 121, JUNIPER Secret Key Object

Attribute Data type | Meaning
CKA VALUE'"*®" | Byte array | Key value (always 40 bytes
long)

“Refer to table Table 15 for footnotes

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 305

JUNIPER keys have 160 checksum bits, and these bits must be properly set. Attempting
to create or unwrap a JUNIPER key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to
create a JUNIPER key with a specified value. Nonetheless, we provide templates for
doing so.

The following is a sample template for creating a JUNIPER MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_JUNI PER
CK_UTF8CHAR | abel [] = “A JUNI PER MEK secret key object”;
CK _BYTE val ue[40] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenpl ate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

b
The following is a sample template for creating a JUNIPER TEK secret key object:

CK_OBJECT _CLASS cl ass = CKO _SECRET_KEY;
CK_KEY_TYPE keyType = CKK_JUN PER
CK_UTF8CHAR | abel [] = “A JUNI PER TEK secret key object”;
CK_BYTE val ue[40] = {...};
CK BBOOL true = CK TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA LABEL, | abel, sizeof (I abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof (value)}

3
12.18.3 JUNIPER key generation

The JUNIPER key generation mechanism, denoted CKM_JUNIPER _KEY_ GEN, is a
key generation mechanism for JUNIPER. The output of this mechanism is called a
Message Encryption Key (MEK).

It does not have a parameter.

June 2004 Copyright © 2004 RSA Security Inc.



306 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

12.18.4 JUNIPER-ECB128

JUNIPER-ECB128, denoted CKM_JUNIPER ECB128, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in 128-bit electronic codebook
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.
For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 122, JUNIPER-ECB128: Data and Length

Function Key type Input length Output length Comments

C_Encrypt JUNIPER | multiple of 16 | same as input length | no final part

C Decrypt JUNIPER | multiple of 16 | same as input length | no final part

12.18.5 JUNIPER-CBC128

JUNIPER-CBC128, denoted CKM_JUNIPER CBC128, is a mechanism for single- and
multiple-part encryption and decryption with JUNIPER in 128-bit cipher-block chaining
mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.
For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 307

Table 123, JUNIPER-CBC128: Data and Length

Function Key type Input length Output length Comments

C_Encrypt JUNIPER | multiple of 16 | same as input length | no final part

C Decrypt JUNIPER | multiple of 16 | same as input length | no final part

12.18.6 JUNIPER-COUNTER

JUNIPER COUNTER, denoted CKM_JUNIPER COUNTER, is a mechanism for
single- and multiple-part encryption and decryption with JUNIPER in counter mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when
decrypting.

Constraints on key types and the length of data are summarized in the following table.
For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 124, JUNIPER-COUNTER: Data and Length

Function Key type Input length Output length Comments

C_Encrypt JUNIPER | multiple of 16 | same as input length | no final part

C_Decrypt JUNIPER | multiple of 16 | same as input length | no final part

12.18.7 JUNIPER-SHUFFLE

JUNIPER-SHUFFLE, denoted CKM_JUNIPER SHUFFLE, is a mechanism for
single- and multiple-part encryption and decryption with JUNIPER in shuffle mode.

It has a parameter, a 24-byte initialization vector. During an encryption operation, this
IV is set to some value generated by the token—in other words, the application cannot
specify a particular IV when encrypting. It can, of course, specify a particular IV when

decrypting.

Constraints on key types and the length of data are summarized in the following table.
For encryption and decryption, the input and output data (parts) may begin at the same
location in memory.

Table 125, JUNIPER-SHUFFLE: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER | multiple of 16 | same as input length | no final part

C_Decrypt JUNIPER | multiple of 16 | same as input length | no final part

June 2004 Copyright © 2004 RSA Security Inc.



308 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.18.8 JUNIPER WRAP

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a
function used to wrap and unwrap an MEK. It can wrap or unwrap SKIPJACK, BATON,
and JUNIPER keys.

It has no parameters.
When wused to unwrap a key, this mechanism contributes the CKA_CLASS,
CKA_KEY_TYPE, and CKA_VALUE attributes to it.

12.19 MD2

12.19.1 Definitions

Mechanisms:

CKM_MD2

CKM_MD2_HVAC

CKM_MD2_HVAC GENERAL

CKM_MD2_KEY_DERI VATI ON
12.19.2 MD?2 digest

The MD2 mechanism, denoted CKM_MD2, is a mechanism for message digesting,
following the MD2 message-digest algorithm defined in RFC 1319.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 126, MD2: Data Length

Function | Data length | Digest length

C Digest any 16
12.19.3 General-length MD2-HMAC
The general-length MD2-HMAC mechanism, denoted

CKM_MD2 HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the MD2 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of MD2 is

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 309

16 bytes). Signatures (MACs) produced by this mechanism will be taken from the start
of the full 16-byte HMAC output.

Table 127, General-length MD2-HMAC: Key And Data Length

Function Key type Data Signature length
length
C Sign generic secret any 0-16, depending on parameters
C Verify generic secret any 0-16, depending on parameters
12.19.4 MD2-HMAC

The MD2-HMAC mechanism, denoted CKM_MD2 HMAUC, is a special case of the
general-length MD2-HMAC mechanism in Section 12.19.3.

It has no parameter, and always produces an output of length 16.

12.19.5 MD2 key derivation

MD?2 key derivation, denoted CKM_MD2 KEY DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with MD2.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of
MD?2).

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

* If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key
will be set properly.

If the requested type of key requires more than 16 bytes, such as DES3, an error is
generated.

June 2004 Copyright © 2004 RSA Security Inc.



310

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA _EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS _SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA NEVER EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

12.20 MDS

12.20.1 Definitions

Mechanisms:

CKM_ND5

CKM_MVD5_HVAC
CKM_MVD5_HVAC_GENERAL
CKM_MD5_KEY DERI VATI ON

12.20.2 MDS digest

The MDS5 mechanism, denoted CKM_MDS5, is a mechanism for message digesting,
following the MD5 message-digest algorithm defined in RFC 1321.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 311

Table 128, MDS: Data Length

Function | Data length | Digest length

C Digest any 16
12.20.3 General-length MD5S-HMAC
The general-length MDS5-HMAC mechanism, denoted

CKM_MD5 HMAC_GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the MD5 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK._ MAC_GENERAL_ PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of MD5 is
16 bytes). Signatures (MACs) produced by this mechanism will be taken from the start
of the full 16-byte HMAC output.

Table 129, General-length MD5-HMAC: Key And Data Length

Function Key type Data Signature length
length
C Sign generic secret any 0-16, depending on parameters
C Verify generic secret any 0-16, depending on parameters
12.20.4 MD5-HMAC

The MDS5-HMAC mechanism, denoted CKM_MDS5 HMAC, is a special case of the
general-length MD5-HMAC mechanism in Section 12.20.3.

It has no parameter, and always produces an output of length 16.

12.20.5 MDS key derivation

MDS5 key derivation, denoted CKM_MDS5 KEY DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with MDS5.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of
MDS5).

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

June 2004 Copyright © 2004 RSA Security Inc.



312 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

* If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key
will be set properly.

If the requested type of key requires more than 16 bytes, such as DES3, an error is
generated.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e If the base key has its CKA ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

» Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA NEVER EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

12.21 SHA-1

12.21.1 Definitions

Mechanisms:

CKM SHA 1
CKM_SHA 1_HWVAC
CKM_SHA_1_HVAC_GENERAL
CKM_SHAL KEY DERI VATI ON

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 313

12.21.2 SHA-1 digest

The SHA-1 mechanism, denoted CKM_SHA 1, is a mechanism for message digesting,
following the Secure Hash Algorithm with a 160-bit message digest defined in FIPS PUB
180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 130, SHA-1: Data Length

Function | Input length | Digest length

C Digest any 20
12.21.3 General-length SHA-1-HMAC
The general-length SHA-1-HMAC mechanism, denoted

CKM_SHA 1 HMAC_ GENERAL, is a mechanism for signatures and verification. It
uses the HMAC construction, based on the SHA-1 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK._ MAC_GENERAL_ PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-20 (the output size of SHA-1
is 20 bytes). Signatures (MACs) produced by this mechanism will be taken from the start
of the full 20-byte HMAC output.

Table 131, General-length SHA-1-HMAC: Key And Data Length

Function Key type Data Signature length
length
C Sign generic secret any 0-20, depending on parameters
C Verify generic secret any 0-20, depending on parameters
12.21.4 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA 1 HMAUG, is a special case of the
general-length SHA-1-HMAC mechanism in Section 12.21.3.

It has no parameter, and always produces an output of length 20.

June 2004 Copyright © 2004 RSA Security Inc.



314 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.21.5 SHA-1 key derivation

SHA-1 key derivation, denoted CKM_SHA1_KEY_DERIVATION, is a mechanism
which provides the capability of deriving a secret key by digesting the value of another
secret key with SHA-1.

The value of the base key is digested once, and the result is used to make the value of
derived secret key.

e If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 20 bytes (the output size of
SHA-1).

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

* If no length was provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, or CDMF key is derived with this mechanism, the parity bits of the key
will be set properly.

If the requested type of key requires more than 20 bytes, such as DES3, an error is
generated.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_ TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

» If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_ NEVER _EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 315

12.22 SHA-256

12.22.1 Definitions

Mechanisms:

CKM SHA256
CKM_SHA256_HVAC
CKM_SHA256_HVAC_GENERAL
CKM_SHA256_KEY_DERI VATI ON

12.22.2 SHA-256 digest

The SHA-256 mechanism, denoted CKM_SHA256, is a mechanism for message
digesting, following the Secure Hash Algorithm with a 256-bit message digest defined in
FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 132, SHA-256: Data Length

Function | Input length | Digest length

C Digest any 32
12.22.3 General-length SHA-256-HMAC
The general-length SHA-256-HMAC mechanism, denoted

CKM_SHA256 HMAC_GENERAL, is the same as the general-length SHA-1-HMAC
mechanism in Section 12.21.3, except that it uses the HMAC construction based on the
SHA-256 hash function and length of the output should be in the range 0-32. The keys it
uses are generic secret keys. FIPS-198 compliant tokens may require the key length to be
at least 16 bytes; that is, half the size of the SHA-256 hash output.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes of the desired
output. This length should be in the range 0-32 (the output size of SHA-256 is 32 bytes).
FIPS-198 compliant tokens may constrain the output length to be at least 4 or 16 (half the
maximum length). Signatures (MACs) produced by this mechanism will be taken from
the start of the full 32-byte HMAC output.

June 2004 Copyright © 2004 RSA Security Inc.



316 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Table 133, General-length SHA-256-HMAC: Key And Data Length

Function Key type Data Signature length
length
C_Sign generic secret Any 0-32, depending on parameters
C_Verity generic secret Any 0-32, depending on parameters
12.22.4 SHA-256-HMAC

The SHA-256-HMAC mechanism, denoted CKM_SHA256 HMAC, is a special case of
the general-length SHA-256-HMAC mechanism in Section 12.22.3.

It has no parameter, and always produces an output of length 32.

12.22.5 SHA-256 key derivation

SHA-256 key derivation, denoted CKM_SHA256_KEY_DERIVATION, is the same as
the SHA-1 key derivation mechanism in Section 12.21.5, except that it uses the SHA-256
hash function and the relevant length is 32 bytes.

12.23 SHA-384

12.23.1 Definitions

Mechanisms:

CKM SHA384
CKM_SHA384_HVAC
CKM_SHA384_HVAC_GENERAL
CKM_SHA384_KEY_DERI VATI ON

12.23.2 SHA-384 digest

The SHA-384 mechanism, denoted CKM_SHA384, is a mechanism for message
digesting, following the Secure Hash Algorithm with a 384-bit message digest defined in
FIPS PUB 180-2.

It does not have a parameter.

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 317

Table 134, SHA-384: Data Length

Function | Input length | Digest length

C Digest any 48
12.23.3 General-length SHA-384-HMAC
The general-length SHA-384-HMAC mechanism, denoted

CKM_SHA256 HMAC_GENERAL, is the same as the general-length SHA-1-HMAC
mechanism in Section 12.21.3, except that it uses the HMAC construction based on the
SHA-384 hash function and length of the output should be in the range 0-48.

12.23.4 SHA-384-HMAC

The SHA-384-HMAC mechanism, denoted CKM_SHA384 HMAC, is a special case of
the general-length SHA-384-HMAC mechanism.

It has no parameter, and always produces an output of length 48.

12.23.5 SHA-384 key derivation

SHA-384 key derivation, denoted CKM_SHA384 KEY_DERIVATION, is the same as
the SHA-1 key derivation mechanism in Section 12.21.5, except that it uses the SHA-384
hash function and the relevant length is 48 bytes.

12.24 SHA-512

12.24.1 Definitions

Mechanisms:

CKM _SHA512
CKM_SHA512_ HWVAC
CKM_SHA512_HVAC_GENERAL
CKM_SHA512_KEY_DERI VATI ON

12.24.2 SHA-512 digest

The SHA-512 mechanism, denoted CKM_SHAS512, is a mechanism for message
digesting, following the Secure Hash Algorithm with a 512-bit message digest defined in
FIPS PUB 180-2.

It does not have a parameter.

June 2004 Copyright © 2004 RSA Security Inc.



318 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Constraints on the length of input and output data are summarized in the following table.
For single-part digesting, the data and the digest may begin at the same location in
memory.

Table 135, SHA-512: Data Length

Function | Input length | Digest length

C Digest any 64
12.24.3 General-length SHA-512-HMAC
The general-length SHA-512-HMAC mechanism, denoted

CKM_SHAS512_ HMAC_GENERAL, is the same as the general-length SHA-1-HMAC
mechanism in Section 12.21.3, except that it uses the HMAC construction based on the
SHA-512 hash function and length of the output should be in the range 0-64.

12.24.4 SHA-512-HMAC

The SHA-512-HMAC mechanism, denoted CKM_SHAS512_HMAUC, is a special case of
the general-length SHA-512-HMAC mechanism.

It has no parameter, and always produces an output of length 64.

12.24.5 SHA-512 key derivation

SHA-512 key derivation, denoted CKM_SHAS12_KEY_DERIVATION, is the same as
the SHA-1 key derivation mechanism in Section 12.21.5, except that it uses the SHA-512
hash function and the relevant length is 64 bytes.

12.25 FASTHASH

12.25.1 Definitions

Mechanisms:

CKM_FASTHASH
12.25.2 FASTHASH digest

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechanism for message
digesting, following the U. S. government’s algorithm.

It does not have a parameter.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS

319

Constraints on the length of input and output data are summarized in the following table:

Table 136, FASTHASH: Data Length

Function | Input length | Digest length

C Digest any 40

12.26 PKCS #5 and PKCS #5-style password-based encryption (PBE)

The mechanisms in this section are for generating keys and I'Vs for performing password-
based encryption. The method used to generate keys and IVs is specified in PKCS #5.

12.26.1 Definitions

Mechanisms:

CKM PBE_MD2_DES_CBC
CKM_PBE_MD5_DES_CBC
CKM_PBE_MD5_CAST_CBC
CKM_PBE_MD5_CAST3_CBC
CKM_PBE_MD5_CAST5_CBC
CKM_PBE_MD5_CAST128_CBC
CKM_PBE_SHAL CAST5_CBC
CKM_PBE_SHA1_CAST128 CBC
CKM PBE_SHA1_RC4_ 128
CKM_PBE_SHA1_RC4_40

CKM_PBE_SHA1_DES3_EDE_CBC
CKM_PBE_SHA1_DES2_EDE_CBC

CKM_PBE_SHA1_RC2 128 CBC
CKM_PBE_SHA1_RC2_40 CBC
CKM_PKCS5_ PBKD2

CKM_PBA_SHAL W TH_SHAL_HMAC

June 2004

Copyright © 2004 RSA Security Inc.



320 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.26.2 Password-based encryption/authentication mechanism parameters

¢ CK_PBE_PARAMS; CK_PBE_PARAMS PTR

CK _PBE_PARAMS is a structure which provides all of the necessary information
required by the CKM PBE mechanisms (see PKCS #5 and PKCS #12 for information on
the PBE generation mechanisms) and the CKM PBA SHA1 WITH SHA1 HMAC
mechanism. It is defined as follows:

t ypedef struct CK PBE_PARAMS {
CK_BYTE_PTR pl ni t Vect or;
CK_UTF8CHAR_PTR pPasswor d;
CK_ULONG ul Passwor dLen;
CK_BYTE_PTR pSal t;

CK_ULONG ul Sal tLen;
CK_ULONG ul I'teration;
} CK_PBE_PARAMS;

The fields of the structure have the following meanings:

plnitVector ~ pointer to the location that receives the 8-byte
initialization vector (IV), if an IV is required;

pPassword  points to the password to be used in the PBE key
generation;

ulPasswordLen length in bytes of the password information;
pSalt  points to the salt to be used in the PBE key generation,;
ulSaltLen length in bytes of the salt information;
ullteration ~ number of iterations required for the generation.

CK_PBE_PARAMS _PTR is a pointer to a CK_PBE_PARAMS.

12.26.3 MD2-PBE for DES-CBC

MD2-PBE for DES-CBC, denoted CKM_PBE _MD2 DES CBC, is a mechanism used
for generating a DES secret key and an IV from a password and a salt value by using the
MD?2 digest algorithm and an iteration count. This functionality is defined in PKCS#5 as
PBKDFTI.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 321

12.26.4 MDS-PBE for DES-CBC

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5 DES CBC, is a mechanism used
for generating a DES secret key and an IV from a password and a salt value by using the

MDS5 digest algorithm and an iteration count. This functionality is defined in PKCS#5 as
PBKDFTI.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

12.26.5 MDS-PBE for CAST-CBC

MD5-PBE for CAST-CBC, denoted CKM_PBE_MDS_CAST_CBC, is a mechanism
used for generating a CAST secret key and an IV from a password and a salt value by
using the MDS5 digest algorithm and an iteration count. This functionality is analogous to
that defined in PKCS#5 PBKDF1 for MDS5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.

12.26.6 MDS-PBE for CAST3-CBC

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5 CAST3 CBC, is a mechanism
used for generating a CAST3 secret key and an IV from a password and a salt value by

using the MDS5 digest algorithm and an iteration count. This functionality is analogous to
that defined in PKCS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST3 key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaults to 8 bytes.
12.26.7 MDS5-PBE for CAST128-CBC (CAST5-CBC)

MDS5-PBE for CAST128-CBC (CAST5-CBO), denoted
CKM_PBE_MD5 CASTI128 CBC or CKM_PBE MDS CASTS CBC, is a
mechanism used for generating a CAST128 (CASTS) secret key and an IV from a

June 2004 Copyright © 2004 RSA Security Inc.



322 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

password and a salt value by using the MDS5 digest algorithm and an iteration count. This
functionality is analogous to that defined in PKCS#5 PBKDF1 for MDS5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CASTS) key generated by this mechanism may be specified
in the supplied template; if it is not present in the template, it defaults to 8 bytes.

12.26.8 SHA-1-PBE for CAST128-CBC (CAST5-CBC)

SHA-1-PBE for CASTI128-CBC (CASTS-CBO), denoted
CKM_PBE_SHA1 _CAST128 CBC or CKM_PBE_SHA1 CAST5 CBC, is a
mechanism used for generating a CAST128 (CASTS5) secret key and an IV from a
password and a salt value by using the SHA-1 digest algorithm and an iteration count.
This functionality is analogous to that defined in PKCS#5 PBKDF1 for MDS5 and DES.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CASTS) key generated by this mechanism may be specified
in the supplied template; if it is not present in the template, it defaults to 8 bytes.

12.26.9 PKCS #5 PBKDF2 key generation mechanism parameters

¢ CK PKCSS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE;
CK_PKCSS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE_PTR

CK_PKCSS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE is used to indicate
the Pseudo-Random Function (PRF) used to generate key bits using PKCS #5 PBKDF2.
It is defined as follows:

t ypedef CK_ULONG
CK_PKCS5_PBKD2_ PSEUDO RANDOM FUNCTI ON_TYPE;

The following PRFs are defined in PKCS #5 v2.0. The following table lists the defined
functions.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 323

Table 137, PKCS #5 PBKDF2 Key Generation: Pseudo-random functions

Source Identifier Value Parameter Type

CKP_PKCS5 PBKD2 HMAC SHA1 | 0x00000001 | No Parameter. pPrfData must
be NULL and ulPrfDatalLen
must be zero.

CK_PKCS5 PBKD2_PSEUDO_RANDOM_FUNCTION_TYPE_PTR is a pointer to
a CK_PKCS5 PBKD2 PSEUDO_RANDOM_FUNCTION_TYPE.

¢ CK PKCS5 PBKDF2 SALT SOURCE _TYPE;
CK_PKCS5 PBKDF2_SALT SOURCE_TYPE_PTR

CK_PKCSS PBKDF2 SALT_SOURCE_TYPE is used to indicate the source of the
salt value when deriving a key using PKCS #5 PBKDF2. It is defined as follows:

t ypedef CK_ULONG CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE;
The following salt value sources are defined in PKCS #5 v2.0. The following table lists

the defined sources along with the corresponding data type for the pSaltSourceData field
in the CK_PKCS5 PBKD2 PARAM structure defined below.

Table 138, PKCS #5 PBKDF2 Key Generation: Salt sources

Source Identifier Value Data Type

CKZ SALT SPECIFIED | 0x00000001 | Array of CK_BYTE containing the value of
the salt value.

CK_PKCS5 PBKDF2 SALT SOURCE TYPE PTR is a pointer to a
CK_PKCS5 PBKDF2_SALT SOURCE _TYPE.

¢ CK_PKCS5 PBKD2 PARAMS; CK_PKCS5 PBKD2 PARAMS PTR

CK_PKCSS PBKD2 PARAMS is a structure that provides the parameters to the
CKM_PKCS5_PBKD2 mechanism. The structure is defined as follows:

t ypedef struct CK _PKCS5_ PBKD2 PARAMS {
CK_PKCS5_PBKDF2_SALT_SOURCE_TYPE sal t Sour ce;
CK VO D _PTR pSal t Sour ceDat a;
CK_ULONG ul Sal t Sour ceDat aLen;
CK ULONG i terations;
CK_PKCS5_PBKD2_PSEUDO_RANDOM FUNCTI ON_TYPE prf;
CK_ VO D_PTR pPrf Dat a;
CK_ULONG ul PrfDataLen; CK UTF8CHAR PTR pPasswor d;
CK_ULONG _PTR ul Passwor dLen;

} CK_PKCS5_PBKD2_PARANS;

June 2004 Copyright © 2004 RSA Security Inc.



324 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The fields of the structure have the following meanings:
saltSource  source of the salt value
pSaltSourceData data used as the input for the salt source
ulSaltSourceDatalen length of the salt source input

iterations ~ number of iterations to perform when generating each
block of random data

prf pseudo-random function to used to generate the key

pPrfData data used as the input for PRF in addition to the salt
value

ulPrfDataLen length of the input data for the PRF

pPassword  points to the password to be used in the PBE key
generation

ulPasswordLen length in bytes of the password information

CK_PKCS5 PBKD2 PARAMS PTR is a pointer to a
CK_PKCSS5 PBKD2 PARAMS.

12.26.10 PKCS #5 PBKD2 key generation

PKCS #5 PBKDF2 key generation, denoted CKM_PKCSS _PBKD2, is a mechanism
used for generating a secret key from a password and a salt value. This functionality is
defined in PKCS#5 as PBKDF2.

It has a parameter, a CK_PKCS5 PBKD2 PARAMS structure. The parameter
specifies the salt value source, pseudo-random function, and iteration count used to
generate the new key.

Since this mechanism can be used to generate any type of secret key, new key templates
must contain the CKA _KEY_TYPE and CKA VALUE_LEN attributes. If the key type
has a fixed length the CKA_VALUE_LEN attribute may be omitted.

12.27 PKCS #12 password-based encryption/authentication mechanisms

The mechanisms in this section are for generating keys and I'Vs for performing password-
based encryption or authentication. The method used to generate keys and IVs is based
on a method that was specified in PKCS #12.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 325

We specify here a general method for producing various types of pseudo-random bits
from a password, p; a string of salt bits, s; and an iteration count, ¢. The “type” of
pseudo-random bits to be produced is identified by an identification byte, ID, the
meaning of which will be discussed later.

Let H be a hash function built around a compression function f: Z," x Z," — Z," (that is,
H has a chaining variable and output of length u bits, and the message input to the
compression function of H is v bits). For MD2 and MDS5, =128 and v=512; for SHA-1,
u=160 and v=512.

We assume here that u and v are both multiples of 8, as are the lengths in bits of the
password and salt strings and the number 7 of pseudo-random bits required. In addition,
u and v are of course nonzero.

1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the salt together to create a string S of length vifls/v | bits (the
final copy of the salt may be truncated to create S). Note that if the salt is the empty
string, then so is S.

3. Concatenate copies of the password together to create a string P of length v[ﬁp/v—| bits
(the final copy of the password may be truncated to create P). Note that if the
password is the empty string, then so is P.

4. Set I=§||P to be the concatenation of S and P.
5. Set j=|_n/u—|.

6. Fori=l1,2, ...,J, do the following:

a) Set A=H(D||I), the ¢™ hash of D||I. That is, compute the hash of D||I; compute
the hash of that hash; etc.; continue in this fashion until a total of ¢ hashes have
been computed, each on the result of the previous hash.

b) Concatenate copies of 4; to create a string B of length v bits (the final copy of 4;
may be truncated to create B).

c) Treating / as a concatenation /o, /i, ..., Iy of v-bit blocks, where k=|_s/v—|+|_p/v—|,
modify 7 by setting [=(I/+B+1) mod 2" for each j. To perform this addition,
treat each v-bit block as a binary number represented most-significant bit first.

7. Concatenate 41, Ao, ..., 4; together to form a pseudo-random bit string, 4.

8. Use the first n bits of 4 as the output of this entire process.

June 2004 Copyright © 2004 RSA Security Inc.



326 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

When the password-based encryption mechanisms presented in this section are used to
generate a key and IV (if needed) from a password, salt, and an iteration count, the above
algorithm is used. To generate a key, the identifier byte /D is set to the value 1; to
generate an [V, the identifier byte ID is set to the value 2.

When the password based authentication mechanism presented in this section is used to
generate a key from a password, salt, and an iteration count, the above algorithm is used.
The identifier byte /D is set to the value 3.

12.27.1 SHA-1-PBE for 128-bit RC4

SHA-1-PBE for 128-bit RC4, denoted CKM_PBE_SHA1_RC4 128, is a mechanism
used for generating a 128-bit RC4 secret key from a password and a salt value by using
the SHA-1 digest algorithm and an iteration count. The method used to generate the key
is described above .

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an IV; for this mechanism,
the contents of this field are ignored, since RC4 does not require an V.

The key produced by this mechanism will typically be used for performing password-
based encryption.

12.27.2 SHA-1-PBE for 40-bit RC4

SHA-1-PBE for 40-bit RC4, denoted CKM_PBE_SHA1 RC4 40, is a mechanism used
for generating a 40-bit RC4 secret key from a password and a salt value by using the
SHA-1 digest algorithm and an iteration count. The method used to generate the key is
described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an IV; for this mechanism,
the contents of this field are ignored, since RC4 does not require an IV.

The key produced by this mechanism will typically be used for performing password-
based encryption.
12.27.3 SHA-1-PBE for 3-key triple-DES-CBC

SHA-1-PBE for 3-key triple-DES-CBC, denoted
CKM_PBE_SHA1 DES3 EDE_CBC, is a mechanism used for generating a 3-key
triple-DES secret key and IV from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key and IV is

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 327

described above. Each byte of the key produced will have its low-order bit adjusted, if
necessary, so that a valid 3-key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

12.27.4 SHA-1-PBE for 2-key triple-DES-CBC

SHA-1-PBE for 2-key triple-DES-CBC, denoted
CKM_PBE_SHA1 _DES2 EDE_CBC, is a mechanism used for generating a 2-key
triple-DES secret key and IV from a password and a salt value by using the SHA-1 digest
algorithm and an iteration count. The method used to generate the key and IV is
described above. Each byte of the key produced will have its low-order bit adjusted, if
necessary, so that a valid 2-key triple-DES key with proper parity bits is obtained.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

12.27.5 SHA-1-PBE for 128-bit RC2-CBC

SHA-1-PBE for 128-bit RC2-CBC, denoted CKM_PBE_SHA1 RC2_ 128 CBC, is a
mechanism used for generating a 128-bit RC2 secret key and IV from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key and IV is described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the
effective number of bits in the RC2 search space should be set to 128. This ensures
compatibility with the ASN.1 Object Identifier ppeW t hNSHA1ANd128Bi t RC2- CBC.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

June 2004 Copyright © 2004 RSA Security Inc.



328 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.27.6 SHA-1-PBE for 40-bit RC2-CBC

SHA-1-PBE for 40-bit RC2-CBC, denoted CKM_PBE _SHA1 RC2 40 CBC, is a
mechanism used for generating a 40-bit RC2 secret key and IV from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key and IV is described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process and the location of the application-supplied
buffer which will receive the 8-byte IV generated by the mechanism.

When the key and IV generated by this mechanism are used to encrypt or decrypt, the
effective number of bits in the RC2 search space should be set to 40. This ensures
compatibility with the ASN.1 Object Identifier ppeW t hSHA1ANd40Bi t RC2- CBC.

The key and IV produced by this mechanism will typically be used for performing
password-based encryption.

12.27.7 SHA-1-PBA for SHA-1-HMAC

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1 _WITH_SHA1_HMAC,
is a mechanism used for generating a 160-bit generic secret key from a password and a
salt value by using the SHA-1 digest algorithm and an iteration count. The method used
to generate the key is described above.

It has a parameter, a CK_PBE_PARAMS structure. The parameter specifies the input
information for the key generation process. The parameter also has a field to hold the
location of an application-supplied buffer which will receive an IV; for this mechanism,
the contents of this field are ignored, since authentication with SHA-1-HMAC does not
require an V.

The key generated by this mechanism will typically be used for computing a SHA-1
HMAC to perform password-based authentication (not password-based encryption). At
the time of this writing, this is primarily done to ensure the integrity of a PKCS #12 PDU.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 329

12.28 RIPE-MD

12.28.1 Definitions

Mechanisms:

CKM Rl PEMD128

CKM_RI PEMD128_HVAC

CKM_RI PEMD128_HVAC GENERAL
CKM_RI PEMD160

CKM_RI PEMD160_HVAC

CKM_RI PEMD160_HVAC GENERAL

12.28.2 RIPE-MD 128 digest

The RIPE-MD 128 mechanism, denoted CKM_RIPEMD128, is a mechanism for
message digesting, following the RIPE-MD 128 message-digest algorithm.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 139, RIPE-MD 128: Data Length

Function |Data length|Digest length

C Digest any 16

12.28.3 General-length RIPE-MD 128-HMAC

The general-length RIPE-MD 128-HMAC mechanism, denoted
CKM_RIPEMD128 HMAC_GENERAL, is a mechanism for signatures and
verification. It uses the HMAC construction, based on the RIPE-MD 128 hash function.
The keys it uses are generic secret keys.

It has a parameter, a CK._ MAC_GENERAL_ PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-16 (the output size of RIPE-
MD 128 is 16 bytes). Signatures (MACs) produced by this mechanism will be taken from
the start of the full 16-byte HMAC output.

Table 140, General-length RIPE-MD 128-HMAC:

Data

Function| Key type length

Signature length

0-16, depending on
parameters

C Verify |generic secret| any 0-16, depending on

C Sign |generic secret| any

June 2004 Copyright © 2004 RSA Security Inc.



330 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

parameters

12.28.4 RIPE-MD 128-HMAC

The RIPE-MD 128-HMAC mechanism, denoted CKM_RIPEMDI128 HMAC, is a
special case of the general-length RIPE-MD 128-HMAC mechanism in Section 12.28.3.

It has no parameter, and always produces an output of length 16.

12.28.5 RIPE-MD 160

The RIPE-MD 160 mechanism, denoted CKM_RIPEMD160, is a mechanism for
message digesting, following the RIPE-MD 160 message-digest algorithm defined in
ISO-10118.

It does not have a parameter.

Constraints on the length of data are summarized in the following table:

Table 141, RIPE-MD 160: Data Length

Function |Data length|Digest length
C_Digest any 20

12.28.6 General-length RIPE-MD 160-HMAC

The general-length RIPE-MD 160-HMAC mechanism, denoted
CKM_RIPEMD160 HMAC GENERAL, is a mechanism for signatures and
verification. It uses the HMAC construction, based on the RIPE-MD 160 hash function.
The keys it uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which holds the length in bytes
of the desired output. This length should be in the range 0-20 (the output size of RIPE-
MD 160 is 20 bytes). Signatures (MACs) produced by this mechanism will be taken from
the start of the full 20-byte HMAC output.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 331

Table 142, General-length RIPE-MD 160-HMAC:

Data

Function| Key type length

Signature length

C Sign |generic secretl any | 0-20, depending on parameters

C_Verify |generic secretl any | 0-20, depending on parameters

12.28.7 RIPE-MD 160-HMAC

The RIPE-MD 160-HMAC mechanism, denoted CKM_RIPEMD160 HMAC, is a
special case of the general-length RIPE-MD 160-HMAC mechanism in Section 12.28.6.

It has no parameter, and always produces an output of length 20.

12.29 SET

12.29.1 Definitions

Mechanisms:

CKM KEY_WRAP_SET OAEP

12.29.2 SET mechanism parameters

¢ CK_KEY WRAP SET OAEP PARAMS;
CK_KEY WRAP SET_OAEP_PARAMS_PTR

CK KEY WRAP SET OAEP _PARAMS is a structure that provides the parameters
to the CKM_KEY WRAP_SET OAEP mechanism. It is defined as follows:

t ypedef struct CK KEY _WRAP_SET QAEP_ PARAMS {
CK_BYTE bBC;
CK_BYTE_PTR pX;
CK_ULONG ul XLen;

} CK_KEY_WRAP_SET_QAEP_PARAMS;

The fields of the structure have the following meanings:
bBC  block contents byte

pX  concatenation of hash of plaintext data (if present) and
extra data (if present)

ulXLen length in bytes of concatenation of hash of plaintext
data (if present) and extra data (if present). 0 if neither
is present

June 2004 Copyright © 2004 RSA Security Inc.



332 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_KEY_WRAP_SET_OAEP_PARAMS_PTR is a pointer to a
CK_KEY_WRAP _SET_OAEP_PARAMS.

12.29.3 OAEP key wrapping for SET

The OAEP key wrapping for SET mechanism, denoted
CKM_KEY WRAP _SET OAEP, is a mechanism for wrapping and unwrapping a DES
key with an RSA key. The hash of some plaintext data and/or some extra data may
optionally be wrapped together with the DES key. This mechanism is defined in the SET
protocol specifications.

It takes a parameter, a CK_KEY_WRAP_SET OAEP_PARAMS structure. This
structure holds the “Block Contents” byte of the data and the concatenation of the hash of
plaintext data (if present) and the extra data to be wrapped (if present). If neither the
hash nor the extra data is present, this is indicated by the u/XLen field having the value 0.

When this mechanism is used to unwrap a key, the concatenation of the hash of plaintext
data (if present) and the extra data (if present) is returned following the convention
described in Section 11.2 on producing output. Note that if the inputs to C_UnwrapKey
are such that the extra data is not returned (e.g., the buffer supplied in the
CK_KEY_WRAP_SET_OAEP_PARAMS structure is NULL PTR), then the
unwrapped key object will not be created, either.

Be aware that when this mechanism is used to unwrap a key, the bBC and pX fields of the
parameter supplied to the mechanism may be modified.

If an application uses C_UnwrapKey with CKM_KEY_ WRAP SET OAEP, it may
be preferable for it simply to allocate a 128-byte buffer for the concatenation of the hash
of plaintext data and the extra data (this concatenation is never larger than 128 bytes),
rather than calling C_UnwrapKey twice. Each call of C_UnwrapKey with
CKM_KEY_WRAP_SET_OAEP requires an RSA decryption operation to be
performed, and this computational overhead can be avoided by this means.

12.30 LYNKS

12.30.1 Definitions

Mechanisms:

CKM_KEY_WRAP_LYNKS
12.30.2 LYNKS key wrapping

The LYNKS key wrapping mechanism, denoted CKM_KEY_WRAP_LYNKS, is a
mechanism for wrapping and unwrapping secret keys with DES keys. It can wrap any 8-

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 333

byte secret key, and it produces a 10-byte wrapped key, containing a cryptographic
checksum.

It does not have a parameter.

To wrap a 8-byte secret key K with a DES key W, this mechanism performs the following

steps:
1. Initialize two 16-bit integers, sum; and sum;, to 0.
2. Loop through the bytes of K from first to last.
3. Set sum;= sum;+the key byte (treat the key byte as a number in the range 0-
255).
4. Set sumo>= sumyt+ sum;.
5. Encrypt K with W in ECB mode, obtaining an encrypted key, E.
6. Concatenate the last 6 bytes of £ with sum,, representing sum, most-significant bit
first. The result is an 8-byte block, 7.
7. Encrypt T with W in ECB mode, obtaining an encrypted checksum, C.
8. Concatenate £ with the last 2 bytes of C to obtain the wrapped key.

When unwrapping a key with this mechanism, if the cryptographic checksum does not
check out properly, an error is returned. In addition, if a DES key or CDMF key is
unwrapped with this mechanism, the parity bits on the wrapped key must be set
appropriately. If they are not set properly, an error is returned.

12.31 SSL

12.31.1 Definitions

Mechanisms:

CKM SSL3_PRE_MASTER KEY GEN
CKM_SSL3_MASTER KEY _DERI VE
CKM_SSL3_KEY_AND_MAC DER!I VE
CKM_SSL3_MASTER KEY DER!I VE_DH
CKM_SSL3_MD5_MAC
CKM_SSL3_SHAL MAC

June 2004 Copyright © 2004 RSA Security Inc.



334 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.31.2 SSL mechanism parameters

¢ CK_SSL3_RANDOM DATA

CK _SSL3 RANDOM _DATA is a structure which provides information about the
random data of a client and a server in an SSL context. This structure is used by both the
CKM_SSL3 MASTER KEY_ DERIVE and the
CKM_SSL3 KEY _AND MAC DERIVE mechanisms. It is defined as follows:

t ypedef struct CK _SSL3 RANDOM DATA {
CK_BYTE_PTR pd i ent Random
CK_ULONG ul d i ent Randonien;
CK_BYTE_PTR pSer ver Random
CK_ULONG ul Ser ver Randonien;

} CK_SSL3_RANDOM DATA,

The fields of the structure have the following meanings:
pClientRandom  pointer to the client’s random data
ulClientRandomLen length in bytes of the client’s random data
pServerRandom  pointer to the server’s random data
ulServerRandomLen  length in bytes of the server’s random data
¢ CK SSL3 MASTER KEY DERIVE PARAMS;
CK _SSL3_MASTER_KEY_DERIVE PARAMS PTR

CK SSL3 MASTER KEY DERIVE PARAMS is a structure that provides the
parameters to the CKM_SSL3 MASTER KEY DERIVE mechanism. It is defined as
follows:

t ypedef struct CK _SSL3_MASTER KEY_DERI VE_PARAMS {
CK_SSL3_RANDOM DATA Random nf o;
CK_VERSI ON_PTR pVer si on;

} CK _SSL3 _MASTER KEY_DERI VE_PARAMS;

The fields of the structure have the following meanings:
RandomlInfo client’s and server’s random data information.

pVersion  pointer to a CK_VERSION structure which receives
the SSL protocol version information

CK _SSL3_MASTER_KEY DERIVE PARAMS PTR is a pointer to a
CK_SSL3_MASTER_KEY DERIVE_PARAMS.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 335

¢ CK SSL3_ KEY MAT OUT; CK_SSL3 KEY MAT OUT PTR

CK_SSL3_KEY_MAT_OUT is a structure that contains the resulting key handles and
initialization vectors after performing a C DeriveKey function with the
CKM_SSL3_KEY_AND MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK SSL3_KEY_ MAT_OUT {
CK_OBJECT_HANDLE hd i ent MacSecr et ;
CK_OBJECT_HANDLE hServer MacSecret ;
CK_OBJECT_HANDLE hd i ent Key;
CK_OBJECT_HANDLE hSer ver Key;
CK_BYTE_PTR pl Vd i ent;
CK_BYTE_PTR pl VSer ver;

} CK_SSL3_KEY_MAT_QUT,;

The fields of the structure have the following meanings:
hClientMacSecret ~ key handle for the resulting Client MAC Secret key
hServerMacSecret  key handle for the resulting Server MAC Secret key
hClientKey  key handle for the resulting Client Secret key
hServerKey  key handle for the resulting Server Secret key

plVClient  pointer to a location which receives the initialization
vector (IV) created for the client (if any)

plVServer  pointer to a location which receives the initialization
vector (IV) created for the server (if any)

CK _SSL3_KEY_MAT_OUT_PTR s a pointer to a CK_SSL3_KEY_MAT_OUT.

¢ CK_SSL3 KEY MAT PARAMS; CK_SSL3 KEY MAT PARAMS PTR

CK SSL3 KEY MAT PARAMS is a structure that provides the parameters to the
CKM_SSL3_KEY_AND MAC_DERIVE mechanism. It is defined as follows:

typedef struct CK SSL3 KEY_ MAT_PARAMS ({

CK_ULONG ul MacSi zel nBi ts;

CK_ULONG ul KeySi zel nBi t s;

CK _ULONG ul I VSi zel nBi t s;

CK_BBOCL bl sExport;

CK_SSL3_RANDOM DATA Random nf o;

CK _SSL3_KEY_NMAT_QUT_PTR pRet ur nedKeyMat eri al ;
} CK_SSL3_KEY_MAT_PARANS;

June 2004 Copyright © 2004 RSA Security Inc.



336 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

The fields of the structure have the following meanings:

ulMacSizelnBits  the length (in bits) of the MACing keys agreed upon
during the protocol handshake phase

ulKeySizelnBits  the length (in bits) of the secret keys agreed upon
during the protocol handshake phase

ullVSizelnBits  the length (in bits) of the IV agreed upon during the
protocol handshake phase. If no IV is required, the
length should be set to 0

blsExport ~ a Boolean value which indicates whether the keys have
to be derived for an export version of the protocol

RandomlInfo client’s and server’s random data information.

pReturnedKeyMaterial ~ points to a CK_SSL3 KEY MAT OUT structures
which receives the handles for the keys generated and
the [Vs

CK_SSL3_KEY_MAT_PARAMS PTR is a pointer to a
CK _SSL3 KEY_MAT_PARAMS.

12.31.3 Pre_master key generation

Pre master key generation in SSL 3.0, denoted
CKM_SSL3 PRE_MASTER _KEY_GEN, is a mechanism which generates a 48-byte
generic secret key. It is used to produce the "pre_master" key used in SSL version 3.0 for
RSA-like cipher suites.

It has one parameter, a CK_VERSION structure, which provides the client’s SSL
version number.

The mechanism contributes the CKA CLASS, CKA KEY _TYPE, and CKA VALUE
attributes to the new key (as well as the CKA VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate
that the object <class is CKO _SECRET KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 337

12.31.4 Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL3_ MASTER_KEY_DERIVE, is
a mechanism used to derive one 48-byte generic secret key from another 48-byte generic
secret key. It is used to produce the "master secret" key used in the SSL protocol from
the "pre_master" key. This mechanism returns the value of the client version, which is
built into the "pre _master" key as well as a handle to the derived "master secret" key.

It has a parameter, a CK_SSL3 MASTER KEY DERIVE PARAMS structure, which
allows for the passing of random data to the token as well as the returning of the protocol
version number which is part of the pre-master key. This structure is defined in Section
12.31.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template; otherwise
they are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate
that the object <class is CKO SECRET KEY, the key type is
CKK_GENERIC _SECRET, and the CKA VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

» If the base key has its CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

e Similarly, if the base key has its CKA_ NEVER _EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the
CK _SSL3 MASTER_KEY_DERIVE PARAMS structure’s plVersion field will be

June 2004 Copyright © 2004 RSA Security Inc.



338 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

modified by the C_DeriveKey call. In particular, when the call returns, this structure
will hold the SSL version associated with the supplied pre master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte
“pre_master” secret with an embedded version number. This includes the RSA cipher
suites, but excludes the Diffie-Hellman cipher suites.

12.31.5 Master key derivation for Diffie-Hellman

Master  key  derivation  for  Diffie-Hellman in  SSL 3.0, denoted
CKM_SSL3 MASTER KEY DERIVE DH, is a mechanism used to derive one 48-
byte generic secret key from another arbitrary length generic secret key. It is used to
produce the "master_secret" key used in the SSL protocol from the "pre master" key.

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which
allows for the passing of random data to the token. This structure is defined in Section
12.31. The pVersion field of the structure must be set to NULL PTR since the version
number is not embedded in the "pre master" key as it is for RSA-like cipher suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate
that the object «class is CKO_SECRET_KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e If the base key has its CKA ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA NEVER EXTRACTABLE attribute set to CK_TRUE, then the derived key

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 339

has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length
48-byte “pre_master” secret with an embedded version number. This includes the Diffie-
Hellman cipher suites, but excludes the RSA cipher suites.

12.31.6 Key and MAC derivation

Key, MAC and v derivation in SSL 3.0, denoted
CKM_SSL3 KEY AND MAC DERIVE, is a mechanism used to derive the
appropriate cryptographic keying material used by a "CipherSuite" from the
"master_secret" key and random data. This mechanism returns the key handles for the
keys generated in the process, as well as the ['Vs created.

It has a parameter, a CK_SSL3 _KEY_MAT_ PARAMS structure, which allows for the
passing of random data as well as the characteristic of the cryptographic material for the
given CipherSuite and a pointer to a structure which receives the handles and IVs which
were generated. This structure is defined in Section 12.31.

This mechanism contributes to the creation of four distinct keys on the token and returns
two IVs (if IVs are requested by the caller) back to the caller. The keys are all given an
object class of CKO_SECRET _KEY.

The two MACing keys ("client write. MAC secret" and "server write MAC secret")
are always given a type of CKK_GENERIC_SECRET. They are flagged as valid for
signing, verification, and derivation operations.

The other two keys ("client write key" and "server write key") are typed according to
information found in the template sent along with this mechanism during a C_DeriveKey
function call. By default, they are flagged as valid for encryption, decryption, and
derivation operations.

IVs will be generated and returned if the wullVSizelnBits field of the
CK _SSL_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their
length in bits will agree with the value in the u/lVSizelnBits field.

All  four  keys  inherit the  values of the CKA_SENSITIVE,
CKA ALWAYS SENSITIVE, CKA _EXTRACTABLE, and
CKA_NEVER _EXTRACTABLE attributes from the base key. The template provided
to C_DeriveKey may not specify values for any of these attributes which differ from
those held by the base key.

June 2004 Copyright © 2004 RSA Security Inc.



340 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Note that the CK SSL3_KEY_MAT _OUT  structure pointed to by the
CK _SSL3_ KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be
modified by the C_DeriveKey call. In particular, the four key handle fields in the
CK _SSL3_ KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffers pointed to by the CK_SSL3_KEY _MAT_OUT
structure’s plVClient and plVServer fields will have IVs returned in them (if IVs are
requested by the caller). Therefore, these two fields must point to buffers with sufficient
space to hold any I'Vs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its
returned information. For most key-derivation mechanisms, C_DeriveKey returns a
single key handle as a result of a successful completion. However, since the
CKM_SSL3_KEY_AND MAC_DERIVE mechanism returns all of its key handles in
the CK_SSL3 KEY_MAT_OUT structure pointed to by the
CK SSL3 KEY MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be
created on the token.
12.31.7 MDS MACing in SSL 3.0

MDS5 MACing in SSL3.0, denoted CKM_SSL3_MDS_MAUC, is a mechanism for single-
and multiple-part signatures (data authentication) and verification using MDS5, based on
the SSL 3.0 protocol. This technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in
bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 143, MDS MACing in SSL 3.0: Key And Data Length

Function Key type Data Signature length
length
C_Sign generic secret any 4-8, depending on
parameters
C Verify generic secret any 4-8, depending on
parameters

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of generic secret key
sizes, in bits.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 341

12.31.8 SHA-1 MACing in SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL3 SHA1 MAC, is a mechanism for
single- and multiple-part signatures (data authentication) and verification using SHA-1,
based on the SSL 3.0 protocol. This technique is very similar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAMS, which specifies the length in
bytes of the signatures produced by this mechanism.

Constraints on key types and the length of input and output data are summarized in the
following table:

Table 144, SHA-1 MACing in SSL 3.0: Key And Data Length

Function Key type Data Signature length
length
C Sign generic secret any 4-8, depending on
parameters
C Verify generic secret any 4-8, depending on
parameters

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of generic secret key
sizes, in bits.

12.32 TLS

Details can be found in [TLS].

12.32.1 Definitions

Mechanisms:

CKM TLS_PRE_MASTER KEY GEN
CKM_TLS_MASTER_KEY_DERI VE
CKM_TLS_KEY_AND MAC DER!I VE
CKM_TLS_MASTER KEY_DERI VE_DH
CKM_TLS_PRF

June 2004 Copyright © 2004 RSA Security Inc.



342 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.32.2 TLS mechanism parameters

¢ CK_TLS_PRF PARAMS; CK_TLS PRF_PARAMS PTR

CK_TLS_PRF_PARAMS is a structure, which provides the parameters to the
CKM_TLS_PRF mechanism. It is defined as follows:

t ypedef struct CK TLS PRF_PARAMS {
CK_BYTE_PTR pSeed;

CK_ULONG ul SeedLen;
CK_BYTE_PTR plLabel;
CK_ULONG ul Label Len;

CK_BYTE_PTR pQut put;
CK_ULONG_PTR pul Qut put Len;
} CK_TLS_PRF_PARANS;

The fields of the structure have the following meanings:
pSeed  pointer to the input seed

ulSeedLen length in bytes of the input seed
pLabel pointer to the identifying label
ulLabelLen length in bytes of the identifying label
pOutput  pointer receiving the output of the operation

pulOutputLen pointer to the length in bytes that the output to be
created shall have, has to hold the desired length
as input and will receive the calculated length as
output

CK_TLS_PRF_PARAMS PTR is a pointer to a CK_TLS_PRF_PARAMS.

12.32.3 TLS PRF (pseudorandom function)

PRF (pseudo random function) in TLS, denoted CKM_TLS_PREF, is a mechanism used
to produce a securely generated pseudo-random output of arbitrary length. The keys it
uses are generic secret keys.

It has a parameter, a CK_TLS_PRF_PARAMS structure, which allows for the passing
of the input seed and its length, the passing of an identifying label and its length and the
passing of the length of the output to the token and for receiving the output.

This mechanism produces securely generated pseudo-random output of the length
specified in the parameter.

This mechanism departs from the other key derivation mechanisms in Cryptoki in not
using the template sent along with this mechanism during a C_DeriveKey function call,
which means the template shall be a NULL PTR. For most key-derivation mechanisms,
C_DeriveKey returns a single key handle as a result of a successful completion.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 343

However, since the CKM_TLS_PRF mechanism returns the requested number of output
bytes in the CK_TLS_PRF_PARAMS structure specified as the mechanism parameter,
the parameter phKey passed to C_DeriveKey is unnecessary, and should be a

NULL PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

12.32.4 Pre_master key generation

Pre master key generation in TLS 1.0, denoted
CKM_TLS_PRE_MASTER _KEY_GEN, is a mechanism which generates a 48-byte
generic secret key. It is used to produce the "pre master" key used in TLS version 1.0
for RSA-like cipher suites.

It has one parameter, a CK_VERSION structure, which provides the client’s TLS
version number.

The mechanism contributes the CKA CLASS, CKA KEY _TYPE, and CKA VALUE
attributes to the new key (as well as the CKA VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate
that the object «class is CKO _SECRET KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

12.32.5 Master key derivation

Master key derivation in TLS 1.0, denoted CKM_TLS MASTER _KEY DERIVE, is a
mechanism used to derive one 48-byte generic secret key from another 48-byte generic
secret key. It is used to produce the "master secret" key used in the TLS protocol from
the "pre_master" key. This mechanism returns the value of the client version, which is
built into the "pre_master" key as well as a handle to the derived "master secret" key.

It has a parameter, a CK_SSL3 MASTER KEY DERIVE PARAMS structure, which
allows for the passing of random data to the token as well as the returning of the protocol

version number which is part of the pre-master key. This structure is defined in Section
12.31.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not

June 2004 Copyright © 2004 RSA Security Inc.



344 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate
that the object «class is CKO_SECRET_KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

e If the base key has its CKA ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA_ALWAYS_SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

* Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA NEVER EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 48 bytes.

Note that the CK_VERSION structure pointed to by the
CK _SSL3 MASTER_KEY_DERIVE PARAMS structure’s pVersion field will be
modified by the C_DeriveKey call. In particular, when the call returns, this structure
will hold the SSL version associated with the supplied pre _master key.

Note that this mechanism is only useable for cipher suites that use a 48-byte
“pre_master” secret with an embedded version number. This includes the RSA cipher
suites, but excludes the Diffie-Hellman cipher suites.

12.32.6 Master key derivation for Diffie-Hellman

Master  key  derivation for  Diffie-Hellman in  TLS 1.0,  denoted
CKM_TLS MASTER_KEY DERIVE DH, is a mechanism used to derive one 48-
byte generic secret key from another arbitrary length generic secret key. It is used to
produce the "master_secret" key used in the TLS protocol from the "pre master" key.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 345

It has a parameter, a CK_SSL3 MASTER_KEY_DERIVE_PARAMS structure, which
allows for the passing of random data to the token. This structure is defined in Section
12.31. The pVersion field of the structure must be set to NULL PTR since the version
number is not embedded in the "pre master" key as it is for RSA-like cipher suites.

The mechanism contributes the CKA CLASS, CKA KEY _TYPE, and CKA VALUE
attributes to the new key (as well as the CKA VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate
that the object «class is CKO _SECRET KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 48.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

* The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for
the new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted,
these attributes each take on some default value.

o If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE,
then the derived key will as well If the base key has its
CKA ALWAYS SENSITIVE attribute set to CK_TRUE, then the derived key has
its CKA ALWAYS SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

» Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to CK_TRUE, then the derived key
has its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure both indicate 48 bytes.

Note that this mechanism is only useable for cipher suites that do not use a fixed length
48-byte “pre_master” secret with an embedded version number. This includes the Diffie-
Hellman cipher suites, but excludes the RSA cipher suites.

12.32.7 Key and MAC derivation

Key, MAC and v derivation in TLS 1.0, denoted
CKM_TLS_KEY_AND _MAC _DERIVE, is a mechanism wused to derive the
appropriate cryptographic keying material used by a "CipherSuite" from the

June 2004 Copyright © 2004 RSA Security Inc.



346 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

"master secret" key and random data. This mechanism returns the key handles for the
keys generated in the process, as well as the ['Vs created.

It has a parameter, a CK_SSL3_KEY_MAT_ PARAMS structure, which allows for the
passing of random data as well as the characteristic of the cryptographic material for the
given CipherSuite and a pointer to a structure which receives the handles and IVs which
were generated. This structure is defined in Section 12.31.

This mechanism contributes to the creation of four distinct keys on the token and returns
two IVs (if IVs are requested by the caller) back to the caller. The keys are all given an
object class of CKO_SECRET _KEY.

The two MACing keys ("client write. MAC secret" and "server write MAC secret")
are always given a type of CKK_GENERIC_SECRET. They are flagged as valid for
signing, verification, and derivation operations.

The other two keys ("client write key" and "server write key") are typed according to
information found in the template sent along with this mechanism during a C_DeriveKey
function call. By default, they are flagged as valid for encryption, decryption, and
derivation operations.

IVs will be generated and returned if the wullVSizelnBits field of the
CK _SSL_KEY_MAT_PARAMS field has a nonzero value. If they are generated, their
length in bits will agree with the value in the u/lVSizelnBits field.

All  four  keys  inherit the  values of the CKA_SENSITIVE,
CKA ALWAYS SENSITIVE, CKA _EXTRACTABLE, and
CKA_NEVER _EXTRACTABLE attributes from the base key. The template provided
to C_DeriveKey may not specify values for any of these attributes which differ from
those held by the base key.

Note that the CK SSL3 KEY MAT OUT structure pointed to by the
CK SSL3 KEY MAT PARAMS structure’s pReturnedKeyMaterial field will be
modified by the C_DeriveKey call. In particular, the four key handle fields in the
CK SSL3 KEY _MAT OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffers pointed to by the CK _SSL3 KEY MAT OUT
structure’s plVClient and plVServer fields will have IVs returned in them (if IVs are
requested by the caller). Therefore, these two fields must point to buffers with sufficient
space to hold any IVs that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its
returned information. For most key-derivation mechanisms, C_DeriveKey returns a
single key handle as a result of a successful completion. However, since the
CKM_SSL3_KEY_AND MAC_DERIVE mechanism returns all of its key handles in
the CK_SSL3_KEY_MAT_OUT structure pointed to by the
CK _SSL3_KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL PTR.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 347

If a call to C_DeriveKey with this mechanism fails, then none of the four keys will be
created on the token.

12.33 WTLS

Details can be found in [WTLS].

When comparing the existing TLS mechanisms with these extensions to support WTLS
one could argue that there would be no need to have distinct handling of the client and
server side of the handshake. However, since in WTLS the server and client use different
sequence numbers, there could be instances (e.g. when WTLS is used to protect
asynchronous protocols) where sequence numbers on the client and server side differ,
and hence this motivates the introduced split.

12.33.1 Definitions

Mechanisms:

CKM WILS_PRE_MASTER KEY_ GEN

CKM WILS_MASTER KEY DERI VE
CKM_WILS_MASTER_KEY_DERI VE_DH_ECC
CKM_WILS_PRF

CKM WILS_SERVER KEY_AND MAC_DERI VE
CKM_WILS_CLI ENT_KEY_AND_MAC_DERI VE

12.33.2 WTLS mechanism parameters

¢ CK_WTLS_RANDOM DATA; CK_WTLS_RANDOM DATA_PTR

CK_WTLS_RANDOM_DATA is a structure, which provides information about the
random data of a client and a server in a WTLS context. This structure is used by the
CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as follows:

t ypedef struct CK WILS RANDOM DATA {
CK_BYTE_PTR pd i ent Random
CK_ULONG ul d i ent Randonien;
CK_BYTE_PTR pSer ver Random
CK_ULONG ul Server Randonien;

} CK_WILS_RANDOM DATA;

The fields of the structure have the following meanings:
pClientRandom  pointer to the client's random data

ulClientRandomLen length in bytes of the client's random
data

pServerRandom  pointer to the server's random data

June 2004 Copyright © 2004 RSA Security Inc.



348 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

ulServerRandomLen length in bytes of the server's
random data

CK_WTLS RANDOM DATA_PTR is a pointer to a
CK_WTLS_RANDOM DATA.

¢ CK_WTLS MASTER KEY DERIVE_PARAMS;
CK_WTLS_MASTER _KEY DERIVE_PARAMS PTR

CK_WTLS _MASTER _KEY_DERIVE PARAMS is a structure, which provides the
parameters to the CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as
follows:

t ypedef struct CK WILS MASTER _KEY_DERI VE_PARAMS {
CK_MECHANI SM TYPE Di gest Mechani sm
CK_WILS_RANDOM DATA Random nf o;

CK_BYTE_PTR pVer si on;
} CK_WLS_MASTER KEY_DERI VE_PARAMNS;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest
mechanism to be used (possible types
can be found in [WTLS])

RandomlInfo Client's and server's random data
information

pVersion pointer to a CK_BYTE which
receives the WTLS protocol version
information

CK_WTLS _MASTER_KEY_DERIVE PARAMS PTR is a pointer to a
CK_WTLS MASTER_KEY_DERIVE_PARAMS.

¢ CK_WTLS_PRF PARAMS; CK_ WTLS PRF PARAMS PTR

CK_WTLS PRF _PARAMS is a structure, which provides the parameters to the
CKM_WTLS_PRF mechanism. It is defined as follows:

typedef struct CK WILS PRF_PARAMS ({
CK_MECHANI SM TYPE Di gest Mechani sm

CK_BYTE_PTR pSeed;
CK_ULONG ul SeedLen;
CK_BYTE_PTR pLabel ;
CK_ULONG ul Label Len;
CK_BYTE_PTR pQut put ;
CK_ULONG _PTR pul Qut put Len;

} CK_WILS PRF_PARANG:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS

349

The fields of the structure have the following meanings:

DigestMechanism

pSeed
ulSeedLen
pLabel
ulLabelLen

pOutput

pulOutputLen

the mechanism type of the digest
mechanism to be used (possible types
can be found in [WTLS])

pointer to the input seed
length in bytes of the input seed
pointer to the identifying label

length in bytes of the identifying
label

pointer receiving the output of the
operation

pointer to the length in bytes that the

output to be created shall have, has to
hold the desired length as input and
will receive the calculated length as
output

CK_WTLS_PRF_PARAMS PTR is a pointer to a CK_WTLS_PRF_PARAMS.

¢ CK WTLS KEY_MAT OUT; CK_WTLS_KEY_MAT_OUT_PTR

CK_WTLS _KEY_MAT_ OUT is a structure that contains the resulting key handles and
initialization vectors after performing a C_DeriveKey function with the
CKM_WTLS_SEVER _KEY_AND_MAC_DERIVE or with the
CKM_WTLS CLIENT KEY AND MAC _ DERIVE mechanism. It is defined as
follows:

typedef struct CK WILS KEY_MAT_OUT {
CK_OBJECT_HANDLE hMacSecr et ;
CK_OBJECT_HANDLE hKey;
CK_BYTE_PTR pl V;

} CK_WILS_KEY_MAT_QUT;

The fields of the structure have the following meanings:
hMacSecret Key handle for the resulting MAC
secret key

hKey Key handle for the resulting secret key

Pointer to a location which receives
plV  the initialization vector (IV) created

(if any)

June 2004 Copyright © 2004 RSA Security Inc.



350 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_WTLS_KEY_MAT OUT _PTR is a pointer to a CK_WTLS_KEY_MAT_OUT.

¢ CK_WTLS KEY MAT PARAMS; CK_WTLS KEY MAT PARAMS PTR

CK_WTLS _KEY_MAT PARAMS is a structure that provides the parameters to the
CKM_WTLS_SEVER _KEY_AND_MAC_DERIVE and the
CKM_WTLS_CLIENT_KEY_AND MAC_DERIVE mechanisms. It is defined as
follows:

typedef struct CK WILS KEY_MAT_PARAMS ({

CK_MECHANI SM TYPE Di gest Mechani sm
CK_ULONG ul MacSi zel nBi t s;
CK_ULONG ul KeySi zel nBi t s;
CK_ULONG ul 1'VSi zel nBits;
CK_ULONG ul SequenceNunber ;
CK_BBOCL bl sExport ;
CK_WLS_RANDOM DATA Random nf o;

CK_WILS_KEY_MAT_QUT_PTR pRet ur nedKeyMat eri al ;
} CK_WILS_KEY_ NAT_ PARANS;

The fields of the structure have the following meanings:
DigestMechanism the mechanism type of the digest
mechanism to be used (possible types
can be found in [WTLS])

ulMacSizelnBits the length (in bits) of the MACing key
agreed upon during the protocol
handshake phase

ulKeySizelnBits the length (in bits) of the secret key
agreed upon during the handshake
phase

ullVSizelnBits the length (in bits) of the IV agreed
upon during the handshake phase. If no
IV is required, the length should be set
to 0.

ulSequenceNumber The current sequence number used for
records sent by the client and server
respectively

blsExport aboolean value which indicates
whether the keys have to be derived for
an export version of the protocol. If this
value is true (i.e. the keys are
exportable) then ulKeySizelnBits is the
length of the key in bits before
expansion. The length of the key after
expansion is determined by the

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 351

information found in the template sent
along with this mechanism during a
C_DeriveKey function call (either the
CKA_KEY_TYPE or the
CKA_VALUE_LEN attribute).

RandomlInfo client’s and server’s random data
information

pReturnedKeyMaterial points to a
CK_WTLS KEY MAT OUT
structure which receives the handles for
the keys generated and the [V

CK_WTLS KEY MAT PARAMS_PTR is a pointer to a
CK_WTLS KEY MAT PARAMS.

12.33.3 Pre master secret key generation for RSA key exchange suite

Pre master secret key generation for the RSA key exchange suite in WTLS denoted
CKM_WTLS_PRE_MASTER _KEY_GEN, is a mechanism, which generates a
variable length secret key. It is used to produce the pre master secret key for RSA key
exchange suite used in WTLS. This mechanism returns a handle to the pre master secret
key.

It has one parameter, a CK_BYTE, which provides the client’s WTLS version.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate
that the object class is CKO_SECRET_KEY, the key type is

CKK _GENERIC_SECRET, and the CKA_VALUE_LEN attribute indicates the length
of the pre master secret key.

For this mechanism, the ulMinKeySize field of the CK_ MECHANISM_INFO structure
shall indicate 20 bytes.

12.33.4 Master secret key derivation

Master secret derivation in WTLS, denoted CKM_WTLS_MASTER_KEY_DERIVE,
is a mechanism used to derive a 20 byte generic secret key from variable length secret
key. It is used to produce the master secret key used in WTLS from the pre master secret
key. This mechanism returns the value of the client version, which is built into the pre
master secret key as well as a handle to the derived master secret key.

June 2004 Copyright © 2004 RSA Security Inc.



352 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure,
which allows for passing the mechanism type of the digest mechanism to be used as well
as the passing of random data to the token as well as the returning of the protocol version
number which is part of the pre master secret key.

The mechanism contributes the CKA CLASS, CKA KEY _TYPE, and CKA VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate
that the object class is CKO_SECRET_KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 20.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these
attributes each take on some default value.

If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE, then
the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE
attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE
attribute set to the same value as its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its

CKA NEVER EXTRACTABLE attribute set to CK_TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 20 bytes.

Note that the CK_BYTE pointed to by the

CK_WTLS _MASTER_KEY_DERIVE_PARAMS structure’s pVersion field will be
modified by the C_DeriveKey call. In particular, when the call returns, this byte will
hold the WTLS version associated with the supplied pre master secret key.

Note that this mechanism is only useable for key exchange suites that use a 20-byte pre
master secret key with an embedded version number. This includes the RSA key
exchange suites, but excludes the Diffie-Hellman and Elliptic Curve Cryptography key
exchange suites.

12.33.5 Master secret key derivation for Diffie-Hellman and Elliptic Curve
Cryptography

Master secret derivation for Diffie-Hellman and Elliptic Curve Cryptography in WTLS,
denoted CKM_WTLS _MASTER_KEY_DERIVE _DH_ECC, is a mechanism used to

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 353

derive a 20 byte generic secret key from variable length secret key. It is used to produce
the master secret key used in WTLS from the pre master secret key. This mechanism
returns a handle to the derived master secret key.

It has a parameter, a CK_WTLS MASTER _KEY DERIVE PARAMS structure,
which allows for the passing of the mechanism type of the digest mechanism to be used
as well as random data to the token. The pVersion field of the structure must be set to
NULL PTR since the version number is not embedded in the pre master secret key as it
is for RSA-like key exchange suites.

The mechanism contributes the CKA CLASS, CKA KEY _TYPE, and CKA VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not
supplied in the template). Other attributes may be specified in the template, or else are
assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate
that the object class is CKO_SECRET_KEY, the key type is
CKK_GENERIC_SECRET, and the CKA_VALUE_LEN attribute has value 20.
However, since these facts are all implicit in the mechanism, there is no need to specify
any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the
new key can both be specified to be either CK_TRUE or CK_FALSE. If omitted, these
attributes each take on some default value.

If the base key has its CKA_ALWAYS SENSITIVE attribute set to CK_FALSE, then
the derived key will as well. If the base key has its CKA_ALWAYS_SENSITIVE
attribute set to CK_TRUE, then the derived key has its CKA_ALWAYS_SENSITIVE
attribute set to the same value as its CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to
CK_FALSE, then the derived key will, too. If the base key has its

CKA NEVER EXTRACTABLE attribute set to CK_TRUE, then the derived key has
its CKA_NEVER_EXTRACTABLE attribute set to the opposite value from its
CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 20 bytes.

Note that this mechanism is only useable for key exchange suites that do not use a fixed
length 20-byte pre master secret key with an embedded version number. This includes the
Diffie-Hellman and Elliptic Curve Cryptography key exchange suites, but excludes the
RSA key exchange suites.

12.33.6 WTLS PREF (pseudorandom function)

PRF (pseudo random function) in WTLS, denoted CKM_WTLS_PRF, is a mechanism
used to produce a securely generated pseudo-random output of arbitrary length. The keys
it uses are generic secret keys.

June 2004 Copyright © 2004 RSA Security Inc.



354 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

It has a parameter, a CK_WTLS_PRF_PARAMS structure, which allows for passing
the mechanism type of the digest mechanism to be used, the passing of the input seed and
its length, the passing of an identifying label and its length and the passing of the length
of the output to the token and for receiving the output.

This mechanism produces securely generated pseudo-random output of the length
specified in the parameter.

This mechanism departs from the other key derivation mechanisms in Cryptoki in not
using the template sent along with this mechanism during a C_DeriveKey function call,
which means the template shall be a NULL PTR. For most key-derivation mechanisms,
C DeriveKey returns a single key handle as a result of a successful completion.
However, since the CKM_WTLS_ PRF mechanism returns the requested number of
output bytes in the CK_ WTLS PRF_ PARAMS structure specified as the mechanism
parameter, the parameter phKey passed to C_DeriveKey is unnecessary, and should be a
NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

12.33.7 Server Key and MAC derivation

Server key, MAC and IV derivation in WTLS, denoted

CKM_WTLS SERVER KEY AND MAC DERIVE, is a mechanism used to derive
the appropriate cryptographic keying material used by a cipher suite from the master
secret key and random data. This mechanism returns the key handles for the keys
generated in the process, as well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_ PARAMS structure, which allows for the
passing of the mechanism type of the digest mechanism to be used, random data, the
characteristic of the cryptographic material for the given cipher suite, and a pointer to a
structure which receives the handles and IV which were generated.

This mechanism contributes to the creation of two distinct keys and returns one I'V (if an
IV is requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET _KEY.

The MACing key (server write MAC secret) is always given a type of
CKK_GENERIC_SECRET. It is flagged as valid for signing, verification and
derivation operations.

The other key (server write key) is typed according to information found in the template
sent along with this mechanism during a C_DeriveKey function call. By default, it is
flagged as valid for encryption, decryption, and derivation operations.

An 1V (server write IV) will be generated and returned if the ullVSizelnBits field of the
CK_WTLS _KEY_MAT PARAMS field has a nonzero value. If it is generated, its
length in bits will agree with the value in the ullVSizelnBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 355

base key. The template provided to C_DeriveKey may not specify values for any of
these attributes that differ from those held by the base key.

Note that the CK_WTLS KEY_MAT_ OUT structure pointed to by the

CK WTLS KEY MAT PARAMS structure’s pReturnedKeyMaterial field will be
modified by the C_DeriveKey call. In particular, the two key handle fields in the
CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_ WTLS_KEY_MAT_OUT
structure’s plV field will have the IV returned in them (if an IV is requested by the
caller). Therefore, this field must point to a buffer with sufficient space to hold any IV
that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its
returned information. For most key-derivation mechanisms, C_DeriveKey returns a
single key handle as a result of a successful completion. However, since the
CKM_WTLS SERVER KEY AND MAC DERIVE mechanism returns all of its
key handles in the CK._ WTLS KEY_ MAT_ OUT structure pointed to by the

CK WTLS KEY MAT PARAMS structure specified as the mechanism parameter,
the parameter phKey passed to C_DeriveKey is unnecessary, and should be a
NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be
created.

12.33.8 Client key and MAC derivation

Client key, MAC and IV derivation in WTLS, denoted
CKM_WTLS CLIENT KEY_ AND MAC DERIVE, is a mechanism used to derive
the appropriate cryptographic keying material used by a cipher suite from the master
secret key and random data. This mechanism returns the key handles for the keys
generated in the process, as well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_ PARAMS structure, which allows for the
passing of the mechanism type of the digest mechanism to be used, random data, the
characteristic of the cryptographic material for the given cipher suite, and a pointer to a
structure which receives the handles and IV which were generated.

This mechanism contributes to the creation of two distinct keys and returns one I'V (if an
IV is requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET _KEY.

The MACing key (client write MAC secret) is always given a type of
CKK_GENERIC_SECRET. It is flagged as valid for signing, verification and
derivation operations.

The other key (client write key) is typed according to information found in the template
sent along with this mechanism during a C_DeriveKey function call. By default, it is
flagged as valid for encryption, decryption, and derivation operations.

June 2004 Copyright © 2004 RSA Security Inc.



356 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

An IV (client write IV) will be generated and returned if the ul/lVSizelnBits field of the
CK_WTLS_KEY_MAT PARAMS field has a nonzero value. If it is generated, its
length in bits will agree with the value in the ullVSizelnBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA NEVER_EXTRACTABLE attributes from the
base key. The template provided to C_DeriveKey may not specify values for any of
these attributes that differ from those held by the base key.

Note that the CK_ WTLS KEY MAT OUT structure pointed to by the

CK WTLS KEY _MAT_ PARAMS structure’s pReturnedKeyMaterial field will be
modified by the C_DeriveKey call. In particular, the two key handle fields in the

CK WTLS KEY MAT_OUT structure will be modified to hold handles to the newly-
created keys; in addition, the buffer pointed to by the CK_ WTLS KEY MAT OUT
structure’s plV field will have the IV returned in them (if an IV is requested by the
caller). Therefore, this field must point to a buffer with sufficient space to hold any IV
that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its
returned information. For most key-derivation mechanisms, C_DeriveKey returns a
single key handle as a result of a successful completion. However, since the
CKM_WTLS_CLIENT_KEY_AND MAC_DERIVE mechanism returns all of its key
handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_ PARAMS structure specified as the mechanism parameter,
the parameter phKey passed to C_DeriveKey is unnecessary, and should be a

NULL PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be
created.

12.34 Miscellaneous simple key derivation mechanisms

12.34.1 Definitions

Mechanisms:

CKM_CONCATENATE_BASE_AND DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR BASE_AND DATA
CKM_EXTRACT _KEY_FROM KEY
CKM_CONCATENATE_BASE_AND_KEY

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 357

12.34.2 Parameters for miscellaneous simple key derivation mechanisms

¢ CK_KEY_DERIVATION_STRING DATA;
CK _KEY DERIVATION STRING DATA PTR

CK_KEY_DERIVATION_STRING_DATA provides the parameters for the
CKM_CONCATENATE_BASE_AND_DATA,
CKM_CONCATENATE_DATA_AND BASE, and
CKM_XOR_BASE_AND DATA mechanisms. It is defined as follows:

typedef struct CK_KEY_DERI VATI ON_STRI NG DATA {
CK_BYTE_PTR pDat a;

CK_ULONG ul Len;
} CK_KEY_DERI VATI ON_STRI NG_DATA:

The fields of the structure have the following meanings:
pData  pointer to the byte string
ulLen  length of the byte string

CK KEY DERIVATION STRING DATA PTR is a  pointer to a
CK _KEY DERIVATION STRING DATA.

¢ CK_EXTRACT PARAMS; CK_EXTRACT_PARAMS_PTR

CK_KEY_EXTRACT_PARAMS provides the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanism. It specifies which bit of the base
key should be used as the first bit of the derived key. It is defined as follows:

typedef CK_ULONG CK_EXTRACT PARANS:;

CK_EXTRACT_PARAMS PTR is a pointer to a CK_EXTRACT_PARAMS.

12.34.3 Concatenation of a base key and another key

This mechanism, denoted CKM_CONCATENATE BASE AND KEY, derives a
secret key from the concatenation of two existing secret keys. The two keys are specified
by handles; the values of the keys specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces
the key value information which is appended to the end of the base key’s value
information (the base key is the key whose handle is supplied as an argument to
C DeriveKey).

June 2004 Copyright © 2004 RSA Security Inc.



358 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

For example, if the value of the base key is 0x01234567, and the value of the other
key is OX89ABCDEF, then the value of the derived key will be taken from a buffer
containing the string 0x0123456789ABCDEF.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the values of the two original keys.

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

* If no length is provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
two original keys’ values, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

e If either of the two original keys has its CKA SENSITIVE attribute set to
CK TRUE, so does the derived key. If not, then the derived key’s
CKA_SENSITIVE attribute is set either from the supplied template or from a default
value.

* Similarly, if either of the two original keys has its CKA EXTRACTABLE attribute
set to CK FALSE, so does the derived key. If not, then the derived key’s
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

e The derived key’s CKA ALWAYS SENSITIVE attribute is set to CK_TRUE if
and only if both of the original keys have their CKA ALWAYS SENSITIVE
attributes set to CK_TRUE.

* Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to

CK TRUE if and only if both of the original keys have their
CKA NEVER_EXTRACTABLE attributes set to CK_TRUE.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 359

12.34.4 Concatenation of a base key and data

This mechanism, denoted CKM_CONCATENATE BASE AND DATA, derives a
secret key by concatenating data onto the end of a specified secret key.

This mechanism takes a parameter, a CK KEY DERIVATION STRING DATA
structure, which specifies the length and value of the data which will be appended to the
base key to derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string 0x0123456789 ABCDEF.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the value of the original key and the data.

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

* If no length is provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
original key’s value and the data, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

» If the base key has its CKA_SENSITIVE attribute set to CK _TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either
from the supplied template or from a default value.

e Similarly, if the base key has its CKA EXTRACTABLE attribute set to
CK FALSE, so does the derived key. If not, then the derived key’s
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

June 2004 Copyright © 2004 RSA Security Inc.



360 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

e The derived key’s CKA ALWAYS_SENSITIVE attribute is set to CK_TRUE if
and only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to
CK TRUE.

* Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to
CK TRUE if and only if the base key has its CKA_NEVER _EXTRACTABLE
attribute set to CK_TRUE.

12.34.5 Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND BASE, derives a
secret key by prepending data to the start of a specified secret key.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING_DATA
structure, which specifies the length and value of the data which will be prepended to the
base key to derive another key.

For example, if the value of the base key is 0x01234567, and the value of the data is
Ox89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string OX89ABCDEF01234567.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the sum of the
lengths of the data and the value of the original key.

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

* If no length is provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

* If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the
data and the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 361

o If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either
from the supplied template or from a default value.

* Similarly, if the base key has its CKA_EXTRACTABLE attribute set to
CK FALSE, so does the derived key. If not, then the derived key’s
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

* The derived key’s CKA_ALWAYS_SENSITIVE attribute is set to CK_TRUE if
and only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to
CK TRUE.

* Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to
CK TRUE if and only if the base key has its CKA_NEVER _EXTRACTABLE
attribute set to CK_TRUE.

12.34.6 XORing of a key and data

XORing key derivation, denoted CKM_XOR _BASE AND DATA, is a mechanism
which provides the capability of deriving a secret key by performing a bit XORing of a
key pointed to by a base key handle and some data.

This mechanism takes a parameter, a CK_KEY_DERIVATION_STRING _DATA
structure, which specifies the data with which to XOR the original key’s value.

For example, if the value of the base key is 0x01234567, and the value of the data is
0x89ABCDEF, then the value of the derived key will be taken from a buffer containing
the string 0x88888888.

* If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equal to the minimum of
the lengths of the data and the value of the original key.

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

* If no length is provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be

compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

June 2004 Copyright © 2004 RSA Security Inc.



362 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than are available by taking the shorter
of the data and the original key’s value, an error is generated.

This mechanism has the following rules about key sensitivity and extractability:

e If the base key has its CKA_SENSITIVE attribute set to CK_TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either
from the supplied template or from a default value.

* Similarly, if the base key has its CKA_EXTRACTABLE attribute set to
CK FALSE, so does the derived key. If not, then the derived key’s
CKA _EXTRACTABLE attribute is set either from the supplied template or from a
default value.

e The derived key’s CKA ALWAYS_SENSITIVE attribute is set to CK_TRUE if
and only if the base key has its CKA_ALWAYS_SENSITIVE attribute set to
CK TRUE.

* Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to
CK TRUE if and only if the base key has its CKA_NEVER_EXTRACTABLE
attribute set to CK_TRUE.

12.34.7 Extraction of one key from another key

Extraction of one key from another key, denoted
CKM_EXTRACT_KEY_FROM_KEY, is a mechanism which provides the capability
of creating one secret key from the bits of another secret key.

This mechanism has a parameter, a CK_EXTRACT PARAMS, which specifies which
bit of the original key should be used as the first bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key
with the 4-byte value 0x329F84A9. We will derive a 2-byte secret key from this key,
starting at bit position 21 (i.e., the value of the parameter to the
CKM_EXTRACT KEY FROM KEY mechanism is 21).

1. We write the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We
regard this binary string as holding the 32 bits of the key, labeled as b0, b1, ..., b31.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at
bit b21. We obtain the binary string 1001 0101 0010 0110.

3. The value of the new key is thus 0x9526.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 363

Note that when constructing the value of the derived key, it is permissible to wrap around
the end of the binary string representing the original key’s value.

If the original key used in this process is sensitive, then the derived key must also be
sensitive for the derivation to succeed.

* Ifno length or key type is provided in the template, then an error will be returned.

* If no key type is provided in the template, but a length is, then the key produced by
this mechanism will be a generic secret key of the specified length.

* If no length is provided in the template, but a key type is, then that key type must
have a well-defined length. If it does, then the key produced by this mechanism will
be of the type specified in the template. If it doesn’t, an error will be returned.

e If both a key type and a length are provided in the template, the length must be
compatible with that key type. The key produced by this mechanism will be of the
specified type and length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of
the key will be set properly.

If the requested type of key requires more bytes than the original key has, an error is
generated.

This mechanism has the following rules about key sensitivity and extractability:

» If the base key has its CKA_SENSITIVE attribute set to CK _TRUE, so does the
derived key. If not, then the derived key’s CKA_SENSITIVE attribute is set either
from the supplied template or from a default value.

e Similarly, if the base key has its CKA EXTRACTABLE attribute set to
CK FALSE, so does the derived key. If not, then the derived key’s
CKA_EXTRACTABLE attribute is set either from the supplied template or from a
default value.

e The derived key’s CKA ALWAYS SENSITIVE attribute is set to CK _TRUE if
and only if the base key has its CKA ALWAYS SENSITIVE attribute set to
CK_TRUE.

* Similarly, the derived key’s CKA_NEVER_EXTRACTABLE attribute is set to

CK TRUE if and only if the base key has its CKA_NEVER _EXTRACTABLE
attribute set to CK_TRUE.

June 2004 Copyright © 2004 RSA Security Inc.



364 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.35 CMS

12.35.1 Definitions
Mechanisms:
CKM_CVs_SI G
12.35.2 CMS Signature Mechanism Objects

These objects provide information relating to the CKM CMS SIG mechanism.
CKM_CMS SIG mechanism object attributes represent information about supported
CMS signature attributes in the token. They are only present on tokens supporting the
CKM_CMS_SIG mechanism, but must be present on those tokens.

Table 145, CMS Signature Mechanism Object Attributes

Attribute Data type | Meaning

CKA_REQUIRED_CMS_ATTRIBUTES | Byte array | Attributes the token always will
include in the set of CMS signed
attributes

CKA_DEFAULT_CMS_ATTRIBUTES | Byte array | Attributes the token will include in
the set of CMS signed attributes in
the absence of any attributes
specified by the application

CKA_SUPPORTED_CMS_ATTRIBUTE | Byte array | Attributes the token may include in
S the set of CMS signed attributes
upon request by the application

The contents of each byte array will be a DER-encoded list of CMS Attributes with
optional accompanying values. Any attributes in the list shall be identified with its object
identifier, and any values shall be DER-encoded. The list of attributes is defined in
ASN.1 as:

Attributes ::= SET SIZE (1..MAX) OF Attribute

Attribute ::= SEQUENCE {
attrType OBJECT IDENTIFIER,
attrValues SET OF ANY DEFINED BY OBJECT IDENTIFIER OPTIONAL

}
The client may not set any of the attributes.

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 365

12.35.3 CMS mechanism parameters

« CK_CMS_SIG_PARAMS, CK_CMS_SIG_PARAMS_PTR

CK_CMS _SIG_PARAMS is a structure that provides the parameters to the
CKM_CMS_SIG mechanism. It is defined as follows:

typedef struct CK _CVMS_SI G PARAMS {

CK_OBJECT _HANDLE certificateHandl e;
CK_MECHANI SM _PTR pSi gni ngMechani sm
CK_MECHANI SM PTR pDi gest Mechani sm
CK_UTF8CHAR_PTR pCont ent Type;

CK_BYTE_PTR pRequest edAttri but es;
CK_ULONG ul Request edAttri but esLen;
CK_BYTE_PTR pRequi redAttri but es;
CK_ULONG ul Requi redAttri but esLen;

} CK_CMVB_SI G_PARAMS:;

The fields of the structure have the following meanings:

certificateHandle Object handle for a certificate associated with the
signing key. The token may use information from
this certificate to identify the signer in the Signerinfo
result value. CertificateHandle may be NULL PTR if
the certificate is not available as a PKCS #11 object
or if the calling application leaves the choice of
certificate completely to the token.

pSigningMechanism Mechanism to use when signing a constructed CMS
SignedAttributes value. E.g.
CKM_SHA1_RSA PKCS.

pDigestMechanism Mechanism to use when digesting the data. Value
shall be NULL PTR when the digest mechanism to
use follows from the pSigningMechanism parameter.

pContentType NULL-terminated string indicating complete MIME
Content-type of message to be signed; or the value
NULL PTR if the message is a MIME object (which
the token can parse to determine its MIME Content-
type if required). Use the value
“appl i cation/ oct et - st r eanf® if the MIME type for
the message is unknown or undefined. Note that the
pContentType string shall conform to the syntax
specified in RFC 2045, i.e. any parameters needed for
correct presentation of the content by the token (such
as, for example, a non-default “charset”) must be

June 2004 Copyright © 2004 RSA Security Inc.



366 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

present. The token must follow rules and procedures
defined in RFC 2045 when presenting the content.

pRequestedAttributes Pointer to DER-encoded list of CMS Attributes the
caller requests to be included in the signed attributes.
Token may freely ignore this list or modify any
supplied values.

ulRequestedAttributesLen Length in bytes of the value pointed to by
pRequestedAttributes

pRequiredAttributes Pointer to DER-encoded list of CMS Attributes (with
accompanying values) required to be included in the
resulting signed attributes. Token must not modify
any supplied values. If the token does not support one
or more of the attributes, or does not accept provided
values, the signature operation will fail. The token
will use its own default attributes when signing if
both the pRequestedAttributes and
pRequiredAttributes field are set to NULL PTR.

ulRequiredAttributesLen Length in bytes, of the value pointed to by
pRequiredAttributes.

12.35.4 CMS signatures

The CMS mechanism, denoted CKM_CMS_SIG, is a multi-purpose mechanism based
on the structures defined in PKCS #7 and RFC 2630. It supports single- or multiple-part
signatures with and without message recovery. The mechanism is intended for use with,
e.g., PTDs (see MeT-PTD) or other capable tokens. The token will construct a CMS
SignedAttributes value and compute a signature on this value. The content of the
SignedAttributes value is decided by the token, however the caller can suggest some
attributes in the parameter pRequestedAttributes. The caller can also require some
attributes to be present through the parameters pRequiredAttributes. The signature is
computed in accordance with the parameter pSigningMechanism.

When this mechanism is used in successful calls to C_Sign or C_SignFinal, the
pSignature return value will point to a DER-encoded value of type Signerinfo. Signerinfo is
defined in ASN.1 as follows (for a complete definition of all fields and types, see RFC
2630):

Signerinfo ::= SEQUENCE {
version CMSVersion,
sid Signerldentifier,
digestAlgorithm DigestAlgorithmldentifier,
signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
signatureAlgorithm SignatureAlgorithmldentifier,
signature SignatureValue,
unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 367

The certificateHandle parameter, when set, helps the token populate the sid field of the
Signerinfo value. If certificateHandle is NULL PTR the choice of a suitable certificate
reference in the Signerinfo result value is left to the token (the token could, e.g., interact
with the user).

This mechanism shall not be used in calls to C_Verify or C_VerifyFinal (use the
pSigningMechanism mechanism instead).

In order for an application to find out what attributes are supported by a token, what
attributes that will be added by default, and what attributes that always will be added, it
shall analyze the contents of the CKH_CMS_ATTRIBUTES hardware feature object.

For the pRequiredAttributes field, the token may have to interact with the user to find out
whether to accept a proposed value or not. The token should never accept any proposed
attribute values without some kind of confirmation from its owner (but this could be
through, e.g., configuration or policy settings and not direct interaction). If a user rejects
proposed  values, or the signature request as such, the value
CKR _FUNCTION_ REJECTED shall be returned.

When possible, applications should use the CKM_CMS_SIG mechanism when
generating CMS-compatible signatures rather than lower-level mechanisms such as
CKM_SHA1_RSA _PKCS. This is especially true when the signatures are to be made on
content that the token is able to present to a user. Exceptions may include those cases
where the token does not support a particular signing attribute. Note however that the
token may refuse usage of a particular signature key unless the content to be signed is
known (i.e. the CKM_CMS_SIG mechanism is used).

When a token does not have presentation capabilities, the PKCS #11-aware application
may avoid sending the whole message to the token by electing to use a suitable signature
mechanism (e.g. CKM_RSA PKCS) as the pSigningMechanism value in the
CKM_CMS _SIG_PARAMS structure, and digesting the message itself before passing
it to the token.

PKCS #l1-aware applications making use of tokens with presentation capabilities,
should attempt to provide messages to be signed by the token in a format possible for the
token to present to the user. Tokens that receive multipart MIME-messages for which
only certain parts are possible to present may fail the signature operation with a return
value of CKR_DATA_INVALID, but may also choose to add a signing attribute
indicating which parts of the message that were possible to present.

12.36 Blowfish
Blowfish, a secret-key block cipher. It is a Feistel network, iterating a simple encryption

function 16 times. The block size is 64 bits, and the key can be any length up to 448 bits.
Although there is a complex initialization phase required before any encryption can take

June 2004 Copyright © 2004 RSA Security Inc.



368 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

place, the actual encryption of data is very efficient on large microprocessors. Ref.
http://www.counterpane.com/bfsverlag.html

12.36.1 Definitions

This section defines the key type “CKK BLOWFISH” for type CK_KEY TYPE as used
in the CKA KEY_ TYPE attribute of key objects.

Mechanisms:

CKM BLOWFI SH_KEY_GEN
CKM_BLOWFI SH_CBC

12.36.2 BLOWFISH secret key objects

Blowfish secret key objects (object class CKO SECRET KEY, key type
CKK BLOWFISH) hold Blowfish keys. The following table defines the Blowfish
secret key object attributes, in addition to the common attributes defined for this object
class:

Table 146, BLOWFISH Secret Key Object

Attribute Data type Meaning
CKA_ VALUE'*®7 Byte array Key value the key can
be any length up to 448

bits. Bit length restricted
to an byte array.

CKA VALUE LEN*® | CK ULONG | Length in bytes of key
value

“Refer to table Table 15 for footnotes

The following is a sample template for creating an Blowfish secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_BLOWFI SH

CK_UTF8CHAR | abel [] “A bl owfish secret key object”;
CK_BYTE val ue[16] = {...};

CK_ BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof (keyType)},
{CKA TOKEN, &true, sizeof(true)},
{
{
{

CKA LABEL, | abel, sizeof (Il abel)-1},
CKA ENCRYPT, &true, sizeof(true)},
CKA VALUE, val ue, sizeof(value)}

Copyright © 2004 RSA Security Inc. June 2004



12. MECHANISMS 369

12.36.3 Blowfish key generation

The Blowfish key generation mechanism, denoted CKM_BLOWFISH_KEY_ GEN, is a
key generation mechanism Blowfish.

It does not have a parameter.

The mechanism generates Blowfish keys with a particular length, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for
the key, or else are assigned default initial values.

For this mechanism, the wul/MinKeySize and ulMaxKeySize fields of the
CK_MECHANISM _INFO structure specify the supported range of key sizes in bytes.

12.36.4 Blowfish -CBC

Blowtish-CBC, denoted CKM_BLOWFISH_CBC, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping.

It has a parameter, a 16-byte initialization vector.

12.37 Twofish

e 128-bit block

e 128-,192-, or 256-bit key

e 16 rounds

e Works in all standard modes
» Efficient key setup on large microprocessors
e Efficient on smart cards

e Efficient in hardware

* Extensively cryptanalyzed

* Unpatented

e  Uncopyrighted

* Free

Ref. http://www.counterpane.com/twofish-brief.html

June 2004 Copyright © 2004 RSA Security Inc.



370 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

12.37.1 Definitions

This section defines the key type “CKK TWOFISH” for type CK KEY TYPE as used
in the CKA KEY TYPE attribute of key objects.

Mechanisms:

CKM TWOFI SH_KEY_GEN
CKM_TWOFI SH_CBC

12.37.2 Twofish secret key objects

Twofish secret key objects (object class CKO _SECRET _KEY, key type
CKK_TWOFISH) hold Twofish keys. The following table defines the Twofish secret
key object attributes, in addition to the common attributes defined for this object class:

Table 147, Twofish Secret Key Object

Attribute Data type Meaning

CKA VALUE'**’ Byte array Key value 128-, 192-, or
256-bit key

CKA VALUE LEN*® | CK ULONG | Length in bytes of key
value

“Refer to table Table 15 for footnotes

The following is a sample template for creating an TWOFISH secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_TWOFI SH;
CK_UTF8CHAR | abel [] = “A twofish secret key object”;
CK_BYTE val ue[16] = {...};

CK BBOOL true = CK_TRUE;
CK_ATTRI BUTE tenpl ate[] = {

{CKA CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof (keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof (Il abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

b
12.37.3 Twofish key generation

The Twofish key generation mechanism, denoted CKM_TWOFISH_KEY_GEN, is a
key generation mechanism Twofish.

It does not have a parameter.

Copyright © 2004 RSA Security Inc. June 2004



13. CRYPTOKI TIPS AND REMINDERS 371

The mechanism generates Blowfish keys with a particular length, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the key type (specifically, the
flags indicating which functions the key supports) may be specified in the template for
the key, or else are assigned default initial values.

For this mechanism, the wulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure specify the supported range of key sizes, in bytes.

12.37.4 Twofish -CBC

Twotish-CBC, denoted CKM_TWOFISH _CBC, is a mechanism for single- and
multiple-part encryption and decryption; key wrapping; and key unwrapping.

It has a parameter, a 16-byte initialization vector.

13 Cryptoki tips and reminders

In this section, we clarify, review, and/or emphasize a few odds and ends about how
Cryptoki works.

13.1 Operations, sessions, and threads

In Cryptoki, there are several different types of operations which can be “active” in a
session. An active operation is essentially one which takes more than one Cryptoki
function call to perform. The types of active operations are object searching; encryption;
decryption; message-digesting; signature with appendix; signature with recovery;
verification with appendix; and verification with recovery.

A given session can have 0, 1, or 2 operations active at a time. It can only have 2
operations active simultaneously if the token supports this; moreover, those two
operations must be one of the four following pairs of operations: digesting and
encryption; decryption and digesting; signing and encryption; decryption and
verification.

If an application attempts to initialize an operation (make it active) in a session, but this
cannot be accomplished because of some other active operation(s), the application
receives the error value CKR OPERATION ACTIVE. This error value can also be
received if a session has an active operation and the application attempts to use that
session to perform any of various operations which do not become “active”, but which
require cryptographic processing, such as using the token’s random number generator, or
generating/wrapping/unwrapping/deriving a key.

June 2004 Copyright © 2004 RSA Security Inc.



372 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

To abandon an active operation an application may have to complete the operation and
discard the result. Closing the session will also have this effect. Alternatively. the library
may allow active operations to be abandoned by the application, simply by allowing
initialization for some other operation. In this case CKR_OPERATION ACTIVE will
not be returned but the previous active operation will be unusable.

Different threads of an application should never share sessions, unless they are extremely
careful not to make function calls at the same time. This is true even if the Cryptoki
library was initialized with locking enabled for thread-safety.

13.2 Multiple Application Access Behavior

When multiple applications, or multiple threads within an application, are accessing a set
of common objects the issue of object protection becomes important. This is especially
the case when application A activates an operation using object O, and application B
attempts to delete O before application A has finished the operation. Unfortunately,
variation in device capabilities makes an absolute behavior specification impractical.
General guidelines are presented here for object protection behavior.

Whenever possible, deleting an object in one application should not cause that object to
become unavailable to another application or thread that is using the object in an active
operation until that operation is complete. For instance, application A has begun a
signature operation with private key P and application B attempts to delete P while the
signature is in progress. In this case, one of two things should happen. The object is
deleted from the device but the operation is allow to complete because the operation uses
a temporary copy of the object, or the delete operation blocks until the signature
operation has completed. If neither of these actions can be supported by an
implementation, then the error code CKR OBJECT HANDLE INVALID may be
returned to application A to indicate that the key being used to perform its active
operation has been deleted.

Whenever possible, changing the value of an object attribute should impact the behavior
of active operations in other applications or threads. If this can not be supported by an
implementation, then the appropriate error code indicating the reason for the failure
should be returned to the application with the active operation.

13.3  Objects, attributes, and templates

In general, a Cryptoki function which requires a template for an object needs the template
to specify—either explicitly or implicitly—any attributes that are not specified
elsewhere. If a template specifies a particular attribute more than once, the function can
return CKR TEMPLATE INVALID or it can choose a particular value of the attribute
from among those specified and use that value. In any event, object attributes are always
single-valued.

Copyright © 2004 RSA Security Inc. June 2004



13. CRYPTOKI TIPS AND REMINDERS 373

13.4 Signing with recovery

Signing with recovery is a general alternative to ordinary digital signatures (‘“‘signing
with appendix”) which is supported by certain mechanisms. Recall that for ordinary
digital signatures, a signature of a message is computed as some function of the message
and the signer’s private key; this signature can then be used (together with the message
and the signer’s public key) as input to the verification process, which yields a simple
“signature valid/signature invalid” decision.

Signing with recovery also creates a signature from a message and the signer’s private
key. However, to verify this signature, no message is required as input. Only the
signature and the signer’s public key are input to the verification process, and the
verification process outputs either “signature invalid” or—if the signature is valid—the
original message.

Consider a simple example with the CKM_RSA_X 509 mechanism. Here, a message is
a byte string which we will consider to be a number modulo »n (the signer’s RSA
modulus). When this mechanism is used for ordinary digital signatures (signatures with
appendix), a signature is computed by raising the message to the signer’s private
exponent modulo n. To verify this signature, a verifier raises the signature to the signer’s
public exponent modulo n, and accepts the signature as valid if and only if the result
matches the original message.

If CKM_RSA X 509 is used to create signatures with recovery, the signatures are
produced in exactly the same fashion. For this particular mechanism, any number
modulo 7 is a valid signature. To recover the message from a signature, the signature is
raised to the signer’s public exponent modulo .

June 2004 Copyright © 2004 RSA Security Inc.






A. MANIFEST CONSTANTS

A Manifest constants

375

The following definitions can be found in the appropriate header file.

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

June 2004

ne

ne

ne
ne

ne

ne

ne
ne
ne

ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CK_I NVALI D_HANDLE

CKN_SURRENDER 0

0

CK_UNAVAI LABLE_| NFORVATI ON (~0UL)
CK_EFFECTI VELY_I NFI NI TE 0
CKF_DONT_BLOCK 1

CKF_ARRAY_ATTRI BUTE  0x40000000
CKU_SO 0
CKU_USER 1
CKU_CONTEXT_SPECIFIC 2

CKS_RO PUBLI C SESSION 0
CKS_RO_USER_FUNCTI ONS 1

CKS_RW PUBLI C_SESSION 2

CKS_RW USER _FUNCTI ONS 3

CKS_RW SO FUNCTIONS 4

CKO_DATA 0x00000000
CKO_CERTI FI CATE 0x00000001
CKO_PUBLI C_KEY 0x00000002
CKO_PRI VATE_KEY 0x00000003
CKO_SECRET_KEY 0x00000004
CKO_HW FEATURE 0x00000005
CKO_DOVAI N_PARAMETERS  0x00000006
CKO_MECHANI SM 0x00000007
CKO_VENDOR DEFI NED 0x80000000
CKH_MONOTONI C_COUNTER  0x00000001
CKH_CLOCK 0x00000002
CKH_USER | NTERFACE 0x00000003
CKH_VENDOR DEFI NED 0x80000000
CKK_RSA 0x00000000
CKK_DSA 0x00000001
CKK_DH 0x00000002
CKK_ECDSA 0x00000003
CKK_EC 0x00000003
CKK_X9_42_DH 0x00000004
CKK_KEA 0x00000005
CKK_GENERI C_SECRET  0x00000010
CKK_RC2 0x00000011
CKK_RCA4 0x00000012
CKK_DES 0x00000013
CKK_DES2 0x00000014
CKK_DES3 0x00000015
CKK_CAST 0x00000016
CKK_CAST3 0x00000017
CKK_CAST5 0x00000018
CKK_CAST128 0x00000018
CKK_RC5 0x00000019

Copyright © 2004 RSA Security Inc.



376

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKK_| DEA
CKK_SKI PIACK
CKK_BATON

CKK_JUNI PER
CKK_CDVF

CKK_AES

CKK_BLOWFI SH
CKK_TWOFI SH
CKK_VENDOR DEFI NED

CKC_X_509
CKC_X_509_ATTR_CERT
CKC_WILS

CKC_VENDOR _DEFI NED

CKA_CLASS

CKA_TOKEN

CKA_PRI VATE
CKA_LABEL

CKA_APPLI CATI ON
CKA_VALUE
CKA_OBJECT | D
CKA_CERTI FI CATE_TYPE
CKA_| SSUER

CKA_SERI AL_NUMBER
CKA_AC_| SSUER
CKA_OWKER
CKA_ATTR_TYPES
CKA_TRUSTED

CKA_CERTI FI CATE_CATE

0x0000001A
0x0000001B
0x0000001C
0x0000001D
0x0000001E
0x0000001F
0x00000020
0x00000021
0x80000000

0x00000000
0x00000001
0x00000002
0x80000000

GCORY

CKA_JAVA M DP_SECURI TY_DOMAI N

CKA_URL
CKA_HASH OF SUBJECT
CKA_HASH_OF_| SSUER P
CKA_CHECK_VALUE
CKA_KEY_TYPE
CKA_SUBJECT

CKA_ID

CKA_SENSI TI VE
CKA_ENCRYPT
CKA_DECRYPT

CKA_WRAP

CKA_UNWRAP

CKA_SI GN

CKA_SI GN_RECOVER
CKA_VER! FY

CKA_VERI FY_RECOVER
CKA_DERI VE
CKA_START_DATE
CKA_END_DATE
CKA_MODULUS
CKA_MODULUS_BI TS
CKA_PUBLI C_EXPONENT
CKA_PRI VATE_EXPONENT
CKA_PRI MVE_1

CKA_PRI MVE_2
CKA_EXPONENT _1
CKA_EXPONENT _2
CKA_COEFFI Cl ENT
CKA_PRI MVE

Copyright © 2004 RSA Security Inc.

PUBLI C_KEY
UBLI C_KEY

0x00000000
0x00000001
0x00000002
0x00000003
0x00000010
0x00000011
0x00000012
0x00000080
0x00000081
0x00000082
0x00000083
0x00000084
0x00000085
0x00000086
0x00000087
0x00000088
0x00000089
0x0000008A
0x0000008B
0x00000090
0x00000100
0x00000101
0x00000102
0x00000103
0x00000104
0x00000105
0x00000106
0x00000107
0x00000108
0x00000109
0x0000010A
0x0000010B
0x0000010C
0x00000110
0x00000111
0x00000120
0x00000121
0x00000122
0x00000123
0x00000124
0x00000125
0x00000126
0x00000127
0x00000128
0x00000130

June 2004



A. MANIFEST CONSTANTS

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

June 2004

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKA_SUBPRI ME
CKA_BASE

CKA_PRI ME_BI TS
CKA_SUBPRI ME_BI TS
CKA_VALUE BI TS
CKA_VALUE_LEN
CKA_EXTRACTABLE
CKA_LOCAL

CKA_NEVER EXTRACTABLE
CKA_ALWAYS_SENSI TI VE
CKA_KEY_GEN_MECHANI SM
CKA_MODI FI ABLE
CKA_ECDSA_PARANMS
CKA_EC_PARAMS

CKA_EC_PO NT
CKA_SECONDARY_AUTH
CKA_AUTH_PI N_FLAGS
CKA_ALWAYS_AUTHENTI CATE

CKA_WRAP_W TH_TRUSTED
CKA_WRAP_TEMPLATE
CKA_UNWRAP_TEMPLATE
CKA_HW FEATURE_TYPE
CKA RESET ON INIT
CKA_HAS_RESET

CKA_PI XEL_X

CKA_PI XEL_Y
CKA_RESOLUTI ON
CKA_CHAR ROVS
CKA_CHAR_COLUMNS
CKA_COLOR

CKA_BI TS_PER_PI XEL
CKA_CHAR SETS
CKA_ENCODI NG_METHODS
CKA_M ME_TYPES
CKA_MECHANI SM_TYPE
CKA_REQUI RED_CMB_ATTRI BUTES
CKA_DEFAULT_CMS_ATTRI BUTES

CKA_SUPPCRTED_CMS_ATTRI BUTES

0x00000131
0x00000132
0x00000133
0x00000134
0x00000160
0x00000161
0x00000162
0x00000163
0x00000164
0x00000165
0x00000166
0x00000170
0x00000180
0x00000180
0x00000181
0x00000200
0x00000201
0x00000202

0x00000210

0x00000300
0x00000301
0x00000302
0x00000400
0x00000401
0x00000402
0x00000403
0x00000404
0x00000405
0x00000406
0x00000480
0x00000481
0x00000482
0x00000500
0x00000501
0x00000502
0x00000503

377

/* Deprecated */
/* Deprecated */

( CKF_ARRAY_ATTRI BUTE| 0x00000211)
( CKF_ARRAY_ATTRI BUTE| 0x00000212)

CKA_ALLOWED MECHANI SMS ( CKF_ARRAY_ATTRI BUTE| 0x00000600)

CKA_VENDOR_DEFI NED

CKM RSA_PKCS_KEY_PAI R_GEN
CKM_RSA_PKCS

CKM RSA 9796

CKM RSA_X_509
CKM_MD2_RSA_PKCS
CKM_MD5_RSA_PKCS
CKM_SHAT_RSA_PKCS

CKM_RI PEMD128_RSA_PKCS
CKM_RI PEMD160_RSA_PKCS
CKM_RSA_PKCS_OAEP

CKM RSA_X9 31 KEY_PAI R GEN
CKM RSA X9 31
CKM_SHAT_RSA X9 31

CKM RSA_PKCS_PSS

CKM SHAL_RSA_PKCS_PSS

CKM DSA_KEY_PAI R_GEN
CKM_DSA

CKM DSA_SHA1

0x80000000

0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000A
0x0000000B
0x0000000C
0x0000000D
0x0000000E
0x00000010
0x00000011
0x00000012

Copyright © 2004 RSA Security Inc.



378

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKM DH_PKCS_KEY_PAI R_GEN

CKM_DH_PKCS_DERI VE

CKM_X9_42_DH _KEY_PAI R_GEN

CKM_X9_42_DH_DERI VE

CKM_X9_42_DH_HYBRI D_DERI VE

CKM_X9_42_MQV_DER! VE
CKM_SHA256_RSA_PKCS
CKM_SHA384_RSA_PKCS
CKM SHA512_ RSA_PKCS

CKM_SHA256_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS

CKM RC2_KEY_GEN
CKM_RC2_ECB
CKM_RC2_CBC
CKM_RC2_MAC
CKM_RC2_MAC_GENERAL
CKM_RC2_CBC_PAD
CKM_RCA_KEY_GEN
CKM_RC4A

CKM DES_KEY_GEN
CKM_DES_ECB
CKM_DES_CBC
CKM_DES_MAC
CKM_DES_MAC_GENERAL
CKM_DES_CBC_PAD

CKM DES2_KEY_GEN

CKM DES3_KEY_GEN

CKM DES3_ECB

CKM DES3_CBC
CKM_DES3_MAC

CKM DES3_MAC_GENERAL
CKM DES3_CBC_PAD
CKM_CDVF_KEY_GEN
CKM_CDVF_ECB
CKM_CDVF_CBC
CKM_CDVF_MAC
CKM_CDMF_MAC_GENERAL
CKM_CDVF_CBC_PAD

CKM _DES_COFB64

CKM DES_OFB8

CKM DES_CFB64
CKM_DES_CFB8

CKM_MD2

CKM_MD2_HVAC
CKM_MD2_HVAC GENERAL
CKM_MD5

CKM_MD5_HVAC
CKM_MD5_HVAC GENERAL
CKM_SHA_1
CKM_SHA_1_HVAC

CKM_SHA_1_HMVAC_GENERAL

CKM_RI PEMD128
CKM_RI PEMD128_HVAC

CKM_RI PEMD128_HVAC_GENERAL

CKM_RI PEMD160
CKM_RI PEMD160_HVAC

CKM_RI PEMD160_HVAC GENERAL

CKM_SHA256
CKM_SHA256_HMAC

Copyright © 2004 RSA Security Inc.

0x00000020
0x00000021
0x00000030
0x00000031
0x00000032
0x00000033
0x00000040
0x00000041
0x00000042
0x00000043
0x00000044
0x00000045
0x00000100
0x00000101
0x00000102
0x00000103
0x00000104
0x00000105
0x00000110
0x00000111
0x00000120
0x00000121
0x00000122
0x00000123
0x00000124
0x00000125
0x00000130
0x00000131
0x00000132
0x00000133
0x00000134
0x00000135
0x00000136
0x00000140
0x00000141
0x00000142
0x00000143
0x00000144
0x00000145
0x00000150
0x00000151
0x00000152
0x00000153
0x00000200
0x00000201
0x00000202
0x00000210
0x00000211
0x00000212
0x00000220
0x00000221
0x00000222
0x00000230
0x00000231
0x00000232
0x00000240
0x00000241
0x00000242
0x00000250
0x00000251

June 2004



A. MANIFEST CONSTANTS

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

June 2004

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM _SHA256_HVAC GENERAL
CKM_SHA384

CKM_SHA384_HVAC
CKM_SHA384_HMVAC_GENERAL

CKM _SHA512

CKM_SHA512_HVAC
CKM_SHA512_HVAC_GENERAL
CKM_CAST_KEY_GEN

CKM CAST_ECB

CKM_CAST_CBC

CKM_CAST_MAC
CKM_CAST_MAC_GENERAL
CKM_CAST_CBC_PAD
CKM_CAST3_KEY_GEN
CKM_CAST3_ECB

CKM_CAST3_CBC

CKM_CAST3_MAC
CKM_CAST3_MAC_GENERAL
CKM_CAST3_CBC_PAD
CKM_CAST5_KEY_GEN
CKM_CAST128_KEY_GEN
CKM_CAST5_ECB
CKM_CAST128_ECB
CKM_CAST5_CBC
CKM_CAST128_CBC
CKM_CAST5_MAC
CKM_CAST128_MAC
CKM_CAST5_MAC_GENERAL
CKM_CAST128_MAC GENERAL
CKM_CAST5_CBC_PAD
CKM_CAST128_CBC_PAD
CKM_RC5_KEY_GEN

CKM_RC5_ECB

CKM_RC5_CBC

CKM_RC5_MAC
CKM_RC5_MAC_GENERAL
CKM_RC5_CBC_PAD

CKM_| DEA_KEY_GEN

CKM_| DEA_ECB

CKM_| DEA_CBC

CKM_| DEA_MAC

CKM_| DEA_MAC_GENERAL

CKM_| DEA_CBC_PAD

CKM_GENERI C_SECRET_KEY_GEN
CKM_CONCATENATE_BASE_AND_KEY
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT_KEY_FROM KEY
CKM_SSL3_PRE_MASTER KEY_GEN
CKM_SSL3_MASTER_KEY_DERI VE
CKM_SSL3_KEY_AND_MAC _DERI VE
CKM_SSL3_MASTER KEY_DERI VE_DH
CKM TLS PRE_MASTER KEY_ GEN
CKM_TLS_MASTER_KEY_DERI VE
CKM_TLS_KEY_AND_MAC_DERI VE
CKM TLS_MASTER KEY_DERI VE_DH
CKM_TLS_PRF

CKM_SSL3_MD5_MAC
CKM_SSL3_SHAL_MAC

0x00000252
0x00000260
0x00000261
0x00000262
0x00000270
0x00000271
0x00000272
0x00000300
0x00000301
0x00000302
0x00000303
0x00000304
0x00000305
0x00000310
0x00000311
0x00000312
0x00000313
0x00000314
0x00000315
0x00000320
0x00000320
0x00000321
0x00000321
0x00000322
0x00000322
0x00000323
0x00000323
0x00000324
0x00000324
0x00000325
0x00000325
0x00000330
0x00000331
0x00000332
0x00000333
0x00000334
0x00000335
0x00000340
0x00000341
0x00000342
0x00000343
0x00000344
0x00000345
0x00000350
0x00000360
0x00000362
0x00000363
0x00000364
0x00000365
0x00000370
0x00000371
0x00000372
0x00000373
0x00000374
0x00000375
0x00000376
0x00000377
0x00000378
0x00000380
0x00000381

379

Copyright © 2004 RSA Security Inc.



380

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKM_MD5_KEY_DERI VATI ON
CKM_MD2_KEY_DER! VATI ON
CKM_SHAL_KEY_DER!I VATI ON
CKM_SHA256_KEY_DERI VATI ON
CKM_SHA384_KEY_DERI VATI ON
CKM_SHA512_KEY_DER! VATI ON
CKM_PBE_MD2_DES_CBC
CKM_PBE_MD5_DES_CBC
CKM_PBE_MD5_CAST_CBC
CKM_PBE_MD5_CAST3_CBC
CKM_PBE_MD5_CAST5_CBC
CKM_PBE_MD5_CAST128_CBC
CKM_PBE_SHAL CAST5_CBC
CKM_PBE_SHA1_CAST128_CBC
CKM_PBE_SHA1_RC4_128
CKM_PBE_SHA1_RC4_40
CKM_PBE_SHA1_DES3_EDE_CBC
CKM_PBE_SHA1_DES2_EDE_CBC
CKM_PBE_SHA1_RC2_128_CBC
CKM_PBE_SHA1_RC2_40_CBC
CKM_PKCS5_PBKD2
CKM_PBA_SHA1 W TH_SHA1_HVAC
CKM WILS_PRE_MASTER KEY_GEN
CKM WILS_MASTER_KEY_DERI VE
CKM WILS_MASTER_KEY _DERVI E_DH_ECC
CKM WILS_PRF

CKM WILS_SERVER_KEY_AND MAC_DER! VE
CKM WILS_CLI ENT_KEY_AND_MAC_DER! VE
CKM_KEY_WRAP_LYNKS
CKM_KEY_W\RAP_SET_OAEP
CKM_CVB_SI G

CKM_SKI PJACK_KEY_GEN
CKM_SKI PJACK_ECB64

CKM_SKI PJACK_CBC64

CKM_SKI PJACK_OFB64

CKM_SKI PJACK_CFB64

CKM_SKI PJACK_CFB32

CKM_SKI PJACK_CFB16

CKM_SKI PJACK_CFBS8

CKM_SKI PJACK_WRAP

CKM_SKI PJACK_PRI VATE_V\RAP
CKM_SKI PJACK_RELAYX

CKM_KEA KEY_PAI R_GEN
CKM_KEA_KEY_DERI VE
CKM_FORTEZZA_TI MESTAMP
CKM_BATON_KEY_GEN
CKM_BATON_ECB128
CKM_BATON_ECB96

CKM BATON_CBC128
CKM_BATON_COUNTER
CKM_BATON_SHUFFLE
CKM_BATON_\\RAP
CKM_ECDSA_KEY_PAI R_GEN
CKM_EC_KEY_PAI R_GEN
CKM_ECDSA

CKM_ECDSA_SHA1
CKM_ECDH1_DERI VE
CKM_ECDH1_COFACTOR_DERI VE
CKM_ECMQV_DERI VE

CKM_JUNI PER_KEY_GEN

Copyright © 2004 RSA Security Inc.

0x00000390
0x00000391
0x00000392
0x00000393
0x00000394
0x00000395
0x000003A0
0x000003A1
0x000003A2
0x000003A3
0x000003A4
0x000003A4
0x000003A5
0x000003A5
0x000003A6
0x000003A7
0x000003A8
0x000003A9
0x000003AA
0x000003AB
0x000003B0
0x000003C0
0x000003D0
0x000003D1
0x000003D2
0x000003D3
0x000003D4
0x000003D5
0x00000400
0x00000401
0x00000500
0x00001000
0x00001001
0x00001002
0x00001003
0x00001004
0x00001005
0x00001006
0x00001007
0x00001008
0x00001009
0x0000100a
0x00001010
0x00001011
0x00001020
0x00001030
0x00001031
0x00001032
0x00001033
0x00001034
0x00001035
0x00001036
0x00001040
0x00001040
0x00001041
0x00001042
0x00001050
0x00001051
0x00001052
0x00001060

June 2004



A. MANIFEST CONSTANTS

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

June 2004

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM JUNI PER_ECB128
CKM_JUNI PER_CBC128
CKM_JUNI PER_COUNTER
CKM_JUNI PER_SHUFFLE
CKM_JUNI PER_WRAP
CKM_FASTHASH
CKM_AES_KEY_GEN
CKM_AES_ECB

CKM_AES_CBC

CKM_AES_MAC
CKM_AES_MAC_GENERAL
CKM_AES_CBC_PAD

CKM BLOWFI SH_KEY_GEN
CKM_BLOWFI SH_CBC
CKM_TWOFI SH_KEY_GEN
CKM_TWOFI SH_CBC
CKM_DES_ECB_ENCRYPT_DATA
CKM_DES_CBC_ENCRYPT_DATA
CKM_DES3_ECB_ENCRYPT _DATA
CKM_DES3_CBC_ENCRYPT_DATA
CKM_AES_ECB_ENCRYPT_DATA
CKM_AES_CBC_ENCRYPT_DATA
CKM_DSA_PARAMETER_GEN
CKM_DH_PKCS_PARAMETER GEN
CKM X9_42_ DH PARAVETER GEN
CKM_VENDOR DEFI NED

CKR_OK

CKR_CANCEL

CKR_HOST_MVEMORY

CKR_SLOT_I D_| NVALI D
CKR_GENERAL_ERROR
CKR_FUNCTI ON_FAI LED
CKR_ARGUMENTS_BAD
CKR_NO_EVENT
CKR_NEED_TO_CREATE_THREADS
CKR_CANT_LOCK

CKR_ATTRI BUTE_READ ONLY
CKR_ATTRI BUTE_SENSI TI VE
CKR_ATTRI BUTE_TYPE_| NVALI D
CKR_ATTRI BUTE_VALUE | NVALI D
CKR_DATA | NVALI D
CKR_DATA_LEN_RANGE
CKR_DEVI CE_ERROR

CKR_DEVI CE_MEMORY

CKR_DEVI CE_REMOVED
CKR_ENCRYPTED_DATA_| NVALI D
CKR_ENCRYPTED_DATA_LEN_RANGE
CKR_FUNCTI ON_CANCELED
CKR_FUNCTI ON_NOT_PARALLEL
CKR_FUNCTI ON_NOT_SUPPORTED
CKR_KEY_HANDLE_| NVALI D
CKR_KEY_SI ZE_RANGE
CKR_KEY_TYPE_| NCONSI STENT
CKR_KEY_NOT_NEEDED
CKR_KEY_CHANGED
CKR_KEY_NEEDED

CKR_KEY_| NDI GESTI BLE
CKR_KEY_FUNCTI ON_NOT_PERM TTED
CKR_KEY_NOT_W\RAPPABLE

0x00001061
0x00001062
0x00001063
0x00001064
0x00001065
0x00001070
0x00001080
0x00001081
0x00001082
0x00001083
0x00001084
0x00001085
0x00001090
0x00001091
0x00001092
0x00001093
0x00001100
0x00001101
0x00001102
0x00001103
0x00001104
0x00001105
0x00002000
0x00002001
0x00002002
0x80000000

0x00000000
0x00000001
0x00000002
0x00000003
0x00000005
0x00000006
0x00000007
0x00000008
0x00000009
0x0000000A
0x00000010
0x00000011
0x00000012
0x00000013
0x00000020
0x00000021
0x00000030
0x00000031
0x00000032
0x00000040
0x00000041
0x00000050
0x00000051
0x00000054
0x00000060
0x00000062
0x00000063
0x00000064
0x00000065
0x00000066
0x00000067
0x00000068
0x00000069

381

Copyright © 2004 RSA Security Inc.



382

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CKR_KEY_UNEXTRACTABLE
CKR_MECHANI SM_| NVALI D

CKR_MECHANI SM_PARAM | NVALI D
CKR_OBJECT_HANDLE_| NVALI D
CKR_OPERATI ON_ACTI VE

CKR_OPERATI ON_NOT_| NI TI ALI ZED
CKR_PI N_| NCORRECT

CKR_PI N_I NVALI D

CKR_PI N_LEN_RANGE

CKR_PI N_EXPI RED

CKR_PI N_LOCKED

CKR_SESSI ON_CLOSED

CKR_SESSI ON_COUNT

CKR_SESSI ON_HANDLE_| NVALI D
CKR_SESSI ON_PARALLEL_NOT_SUPPORTED
CKR_SESSI ON_READ_ONLY

CKR_SESSI ON_EXI STS

CKR_SESS| ON_READ_ONLY_EXI STS
CKR_SESSI ON_READ_WRI TE_SO EXI STS
CKR_SI GNATURE_| NVALI D

CKR_SI GNATURE_LEN_RANGE
CKR_TEMPLATE_I NCOVPLETE
CKR_TEMPLATE_| NCONSI STENT
CKR_TOKEN_NOT_PRESENT
CKR_TOKEN_NOT_RECOGNI ZED
CKR_TOKEN_W\RI TE_PROTECTED
CKR_UNWRAPPI NG_KEY_HANDLE_| NVALI D
CKR_UNWRAPPI NG_KEY_SI ZE_RANGE
CKR_UNVIRAPPI NG_KEY_TYPE_| NCONSI STENT
CKR_USER_ALREADY LOGGED | N
CKR_USER_NOT_LOGGED | N
CKR_USER _PI N_NOT_I NI TI ALI ZED
CKR_USER_TYPE_| NVALI D
CKR_USER_ANOTHER ALREADY_LOGGED | N
CKR_USER_TOO_MANY_TYPES
CKR_WRAPPED KEY_| NVALI D
CKR_WWRAPPED_KEY_LEN_RANGE
CKR_WRAPPI NG_KEY_ HANDLE_ | NVALI D
CKR_WRAPPI NG_KEY_SI ZE_RANGE
CKR_WRAPPI NG_KEY_TYPE_| NCONSI STENT
CKR_RANDOM SEED NOT_SUPPORTED
CKR_RANDOM NO_RNG

CKR_DOVAI N_PARAVS_| NVALI D
CKR_BUFFER_TOO_SMALL

CKR_SAVED STATE_| NVALI D

CKR_| NFORMATI ON_SENSI TI VE
CKR_STATE_UNSAVEABLE

CKR_CRYPTOKI _NOT_I NI TI ALI ZED
CKR_CRYPTOKI _ALREADY_| NI TI ALI ZED
CKR_MUTEX_BAD
CKR_MUTEX_NOT_LOCKED

CKR_FUNCTI ON_REJECTED
CKR_VENDOR_DEFI NED

B Token profiles

0x0000006A
0x00000070
0x00000071
0x00000082
0x00000090
0x00000091
0x000000A0
0x000000A1
0x000000A2
0x000000A3
0x000000A4
0x000000B0O
0x000000B1
0x000000B3
0x000000B4
0x000000B5
0x000000B6
0x000000B7
0x000000B8
0x000000C0
0x000000C1
0x000000D0
0x000000D1
0x000000EO
0x000000E1
0x000000E2
0x000000F0
0x000000F1
0x000000F2
0x00000100
0x00000101
0x00000102
0x00000103
0x00000104
0x00000105
0x00000110
0x00000112
0x00000113
0x00000114
0x00000115
0x00000120
0x00000121
0x00000130
0x00000150
0x00000160
0x00000170
0x00000180
0x00000190
0x00000191
0x000001A0
0x000001A1
0x00000200
0x80000000

This appendix describes “profiles,” i.e., sets of mechanisms, which a token should
support for various common types of application. It is expected that these sets would be

Copyright © 2004 RSA Security Inc.

June 2004



B. TOKEN PROFILES 383

standardized as parts of the various applications, for instance within a list of requirements
on the module that provides cryptographic services to the application (which may be a
Cryptoki token in some cases). Thus, these profiles are intended for reference only at this
point, and are not part of this standard.

The following table summarizes the mechanisms relevant to two common types of
applications:

Table B-1, Mechanisms and profiles

Application
Government Cellular Digital Packet

Mechanism Authentication-only Data
CKM_DSA_KEY_PAIR_GEN v

CKM_DSA v

CKM_DH_PKCS KEY_PAIR GEN v
CKM_DH_PKCS_DERIVE v
CKM_RC4_KEY_GEN v
CKM_RC4 v
CKM_SHA 1 v

B.1  Government authentication-only

The U.S. government has standardized on the Digital Signature Algorithm as defined in
FIPS PUB 186-2 for signatures and the Secure Hash Algorithm as defined in FIPS PUB
180-2 for message digesting. The relevant mechanisms include the following:

DSA key generation (512-1024 bits)
DSA (512-1024 bits)
SHA-1

B.2  Cellular Digital Packet Data

Cellular Digital Packet Data (CDPD) is a set of protocols for wireless communication.
The basic set of mechanisms to support CDPD applications includes the following:

Diffie-Hellman key generation (256-1024 bits)
Diffie-Hellman key derivation (256-1024 bits)
RC4 key generation (40-128 bits)

RC4 (40-128 bits)

(The initial CDPD security specification limits the size of the Diffie-Hellman key to 256
bits, but it has been recommended that the size be increased to at least 512 bits.)

June 2004 Copyright © 2004 RSA Security Inc.



384 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

B.3  Other profiles

The reader is also informed of the presence of other profiles of PKCS #11 v2. — See
[PKCS #11-C] and [PKCS #11-P]

Copyright © 2004 RSA Security Inc. June 2004



C. COMPARISON OF CRYPTOKI AND OTHER APIS

C Comparison of Cryptoki and other APIs
This appendix compares Cryptoki with the following cryptographic APIs:

e ANSI N13-94 - Guideline X9.TG-12-199X, Using Tessera in Financial Systems: An
Application Programming Interface, April 29, 1994

*  X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

C.1 FORTEZZA CIPG, Rev. 1.52

This document defines an API to the FORTEZZA PCMCIA Crypto Card. It is at a level
similar to Cryptoki. The following table lists the FORTEZZA CIPG functions, together
with the equivalent Cryptoki functions:

Table C-1, FORTEZZA CIPG vs. Cryptoki

FORTEZZA CIPG Equivalent Cryptoki
CI_ChangePIN C_InitPIN, C_SetPIN
CI_CheckPIN C Login

CI Close

C_CloseSession

CI Decrypt

C_Decryptlnit, C_Decrypt, C_DecryptUpdate,
C_DecryptFinal

CI_DeleteCertificate

C_DestroyObject

CI DeleteKey

C_DestroyObject

CI_Encrypt

C_Encryptlnit, C_Encrypt, C_EncryptUpdate,
C_EncryptFinal

CI_ExtractX

C_ WrapKey

CI_GeneratelV

C_GenerateRandom

Cl_GenerateMEK

C_GenerateKey

CI_GenerateRa

C_GenerateRandom

CI_GenerateRandom

C_GenerateRandom

CI_GenerateTEK

C_GenerateKey

CI_GenerateX

C_GenerateKeyPair

CI_GetCertificate

C _FindObjects

CI_Configuration

C_GetTokenlnfo

Cl_GetHash C Digestlnit, C_Digest, C_DigestUpdate, and
C_DigestFinal
CI_GetlV No equivalent

CI_GetPersonalityList

C_FindObjects

Cl_GetState

C_GetSessionlnfo

CI_GetStatus

C_GetTokenlnfo

June 2004

Copyright © 2004 RSA Security Inc.

385



386 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

FORTEZZA CIPG Equivalent Cryptoki

CI_GetTime C_GetTokenInfo or
C_GetAttributeValue(clock object) [preferred]

CI Hash C Digestlnit, C_Digest, C_DigestUpdate, and

C DigestFinal

CI Initialize

C Initialize

CI InitializeHash

C_Digestlnit

CI InstallX

C_UnwrapKey

CI LoadCertificate

C_CreateObject

CI _LoadDSAParameters

C CreateObject

CI LoadInitValues

C_SeedRandom

CI LoadlV C_Encryptlnit, C_Decryptlnit
CI LoadK C Signlnit

CI LoadPublicKeyParameters | C_CreateObject

CI_LoadPIN C SetPIN

CI LoadX C_CreateObject

CI Lock Implicit in session management
CI_Open C_OpenSession

CI RelayX C WrapKey

CI Reset C CloseAllSessions

CI Restore Implicit in session management
CI Save Implicit in session management
CI_Select C_OpenSession
CI_SetConfiguration No equivalent

CI_SetKey C_Encryptlnit, C_Decryptlnit
CI_SetMode C_Encryptlnit, C_Decryptlnit
CI_SetPersonality C_CreateObject

CI_SetTime No equivalent

CI Sign C Signlnit, C_Sign

CI_Terminate

C_CloseAllSessions

CI_Timestamp

C_Signlnit, C_Sign

CI _Unlock

Implicit in session management

CI_UnwrapKey

C_UnwrapKey

CI VerifySignature

C Verifylnit, C_Verify

CI VerifyTimestamp

C_Verifylnit, C_Verify

Cl_WrapKey

C_WrapKey

CI Zeroize

C_InitToken

Copyright © 2004 RSA Security Inc.

June 2004




C. COMPARISON OF CRYPTOKI AND OTHER APIS

C.2 GCS-API

This proposed standard defines an API to high-level security services such as
authentication of identities and data-origin, non-repudiation, and separation and
protection. It is at a higher level than Cryptoki. The following table lists the GCS-API
functions with the Cryptoki functions used to implement the functions. Note that full
support of GCS-API is left for future versions of Cryptoki.

Table C-2, GCS-API vs. Cryptoki

GCS-API Cryptoki implementation

retrieve CC

release CC

generate _hash C Digestlnit, C_Digest

generate_random number C_GenerateRandom

C_Signlnit, C_Sign, C_SignUpdate,
C SignFinal

generate _checkvalue

C_Verifylnit, C_Verify, C_VerifyUpdate,
C VerifyFinal

verify checkvalue

C_Encryptlnit, C_Encrypt, C_EncryptUpdate,
C_EncryptFinal

data encipher

C_Decryptlnit, C_Decrypt, C_DecryptUpdate,
C DecryptFinal

data decipher

create CC

derive key C DeriveKey
generate key C_GenerateKey
store CC

delete CC

replicate CC

export_key C WrapKey
import_key C _UnwrapKey
archive CC C WrapKey
restore CC C _UnwrapKey

set key state

generate_key pattern

verify key pattern

derive clear key C DeriveKey

generate _clear key C_GenerateKey

load key parts

clear key encipher C_ WrapKey

clear key decipher C_UnwrapKey

June 2004 Copyright © 2004 RSA Security Inc.

387



388 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

GCS-API

Cryptoki implementation

change key context

load initial key

generate _initial key

set_current master key

protect under new master key

protect under current master key

initialise_random number generator

C_SeedRandom

install algorithm

de install algorithm

disable algorithm

enable algorithm

set_defaults

Copyright © 2004 RSA Security Inc.

June 2004



D. INTELLECTUAL PROPERTY CONSIDERATIONS

D Intellectual property considerations

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829, which expired
on September 20, 2000. The RCS5 block cipher is protected by U.S. Patents 5,724,428 and
5,835,600. RSA Security Inc. makes no other patent claims on the constructions
described in this document, although specific underlying techniques may be covered.

RSA, RC2 and RC4 are registered trademarks of RSA Security Inc. RC5 is a trademark
of RSA Security Inc.

CAST, CAST3, CASTS, and CASTI28 are registered trademarks of Entrust
Technologies. OS/2 and CDMF (Commercial Data Masking Facility) are registered
trademarks of International Business Machines Corporation. LYNKS is a registered
trademark of SPYRUS Corporation. IDEA is a registered trademark of Ascom Systec.
Windows, Windows 3.1, Windows 95, Windows NT, and Developer Studio are
registered trademarks of Microsoft Corporation. UNIX is a registered trademark of UNIX
System Laboratories. FORTEZZA is a registered trademark of the National Security
Agency.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Security Inc. makes no other representations regarding intellectual property claims
by other parties. Such determination is the responsibility of the user.

June 2004 Copyright © 2004 RSA Security Inc.

389



390 PKCS #11 v2.20: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

E Method for Exposing Multiple-PINs on a Token Through
Cryptoki (deprecated)

Note: This support may be present for backwards compatibility. Refer to
PKCS11 V 2.11 for details.

Copyright © 2004 RSA Security Inc. June 2004




F. REVISION HISTORY 391

F Revision History

This is the initial version of PKCS #11 v2.20.

June 2004 Copyright © 2004 RSA Security Inc.



