IEN: 124

DOD STANDARD

TRANSMISSION CONTROL PROTOCOL

December 1979

prepared for

Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington, Virginia 22209

by

Information Sciences Institute
University of Southern California
4676 Admiralty Way
Marina del Rey, California 90291

Cohen

December 1979

3.

_— ek ok o
-

W E e g —

Transmission Control Pratocol

TABLE OF CONTENTS

e e e S i e 6 O) EL Lt S e AT e e I e 1
SCOPe ..ianas P TR R NN E e AR K E S b e Ao N OG0 00 GGG oo 2
T b T T e i B 6 o SO b s o B e L RS 2
Interfaces e A NN r N a s s s i A e oAt e R e el uhat ea e el ey 3
Operation R T T T T 3

PHILGEDPHY iiiiiiii e B ?

1 Elements of the Internetwork DYB L ey e e ateleXelits 1
2 Model of Operation B E N e R R E N SRR R Rk R Rk kb e e e e e T
el oL Ry T T D R e e L R e 8
4 Interfaces COBGE N O O T IC LL CCL C T] C CL i) Eh T e o r P vas 9
.5 Relation to Other Protocols OO0 0G00 08 0.0 5 0 aE D D o e (e e |
6 Reliable Communication 000000000000 aa0R00 000000 ARa0 oG a O 10
7 Connection Establishment and Clearing .cuvveiensas COOOCooonaEhE 10
8 Data Communication MRk e e e YR e oftongooong 12
9 Precedence and Security B e R e e e B RS E e e 13
10 Robustness Prineiple B R N e e e R e S e e e e e 13

FUNCTI.DHAL SPECIFIEATIOH '-i‘!!'lli‘!'llli“"lliii llllll LR I) 15

3.1 Header Format T L T I L 15
32 TermINelogY . u.ocoocs st O O L 0 D G GO0 D O e O G e e G e P 19
3.3 Sequence Numbers T T 24
3.4 Establishing a connection % e S e e a8 e e e e aie 29
3.5 Closing a Connection s E Rt E NSt ... 35
3.6 Precedence and Security B e eE RN R R R B A EE e, 38
3.7 Data Communiecation CiRFATmLaTS winllu uininiatulule atnainlain el oielotcre Rialelotare ot 38
3.8 Interfaces OOO LG OO GED aE slululatalalelatelalelalateletste alataloto et e ya
3.9 Event Processing Salelalerale o vee B2

[Page i]

December 1979
Transmission Control Protocol

[Page 1i]

December 1979
Transmission Control Protoeol

PREFACE

This document describes the DoD Standard Transmission Control Protocol
(TCP). There have been seven earlier editions of the ARPA TCP
specification on which this standard is based, and the present text
draws heavily from them. There have been many contributors to this work
both in terms of concepts and in terms of text. This edition
incorporates the addition of security, compartmentation, and precedence
concepts into the TCP specification.

Jon Postel

Editor

[Page iii]

Decembar 1979

IEN:124

Replaces: IENs 112,

81, 55, 44, 40, 27, 21, 5

. DOD STANDARD

TRANSMISSION CONTROL PROTOCOL

1. INTRODUCTION

The Transmission Control Protoecol (TCP) is intended for use as a highly
reliable host-to-host protocol between hosts in packet-switched computer
communication networks, and especlally in interconnected systems of such
networks.

This document describes the functions to be performed by the
Transmission Control Protocol, the program that implements it, and its
interface to programs or users that require its services,

1.1. Motivation

Computer eommunication systems are playing an inereasingly important
role in military, government, and civilian environments. This
document primarily focuses its attention on military computer
communication requirements, especially robustness in the prasence of
communication unreliability and availability in the presence of
congestion, but many of these problems are found in the eivilian and
Bovernment sector as well,

As strategic and taetiecal computer communication networks are
developed and deployed, it is essential to provide means of
interconneeting them and to provide standard interprocess
communication protocols which can support a broad range of
applications. In anticipation of the need for sueh standards, the
Deputy Undersecretary of Defense for Research and Engineering has
declared the Transmission Contrel Protocol (TCP) described herein to
be a basis for DoD-wide inter-process communication protoecol
standardization.

TCP is a connection-oriented, end-to-end reliable protocol designed to
fit into a layered hierarchy of protocols which support multi-network
applications. The TCP provides for reliable inter-process
communication between pairs of processes in host computers attached to
distinet but interconnected computer communication networks. Very few
assumptions are made as to the reliability of the communieation
protocols below the TCP layer, At most, the TCP assumes it can obtain
a2 simple, potentially unreliable datagram service from the lower level
protocols. In principle, the TCP should be able to operate above a
wide spectrum of communication systems ranging from hard-wired
connections to packet-switched or eircuit-switched networks.

[Page 1]

December 1979
Transmission Control Protocol
Introduction

The TCP fits into a layered protocol architecture just above a basic
Internet Protocol [1] whiech provides a way for the TCP to send and
receive variable-length segments of information enclosed in internet
datagram "envelopes". The internet datagram provides a means for
addreszing source and destination TCPs in different networks, and the
internet protocol also deals with any fragmentation or reassembly of
the TCP segments which might be required to achieve transport and
delivery through multiple networks and interconnecting gateways. The
internet protocol also carries information on the precedence, security
elassification and compartmentation of the TCP segments, so this
information can be communicated end-to-end across multiple networks.

Protocol Layering

higher-level

TCP

¥
I
[
]
]
'
T
[}
I

i internet protocol
o 4
[r i i
icommunication network)

-+ e e e

Figure 1

Much of this document is written in the context of TCP implementations
which are co-resident with higher level protocols in the host
computer. As a practical matter, many computer systems will be
connected to networks via front-end computers which house the TCP and
internet protocol layers, as well as network specifiec software. The
TCP specification describes an interface to the higher level protocols
which appears to be implementable even for the front-end case, as long
as a suitable host-to-front end protocol is implemented.

1.2. Scope

The TCP is intended to provide a reliable process-to-process
communication service in a multinetwork environment. The TCP is
intended to be a host-to-host protocol in common use in multiple
networks,

1.3. About this Document
This document represents a specification of the behavior required of
any TCP implementation, both in its interactions with higher level

protocols and in its interactions with other TCPs, The rest of this
section offers a very brief view of the protocol interfaces and

[Page 2]

December 1979
Transmission Control Protoecol
Introduction

operation. Section 2 summarizes the philosophical basis for the TCP
design. Section 3 offers both a detailed description of the actions
required of TCP when various events occur (arrival of new segments,
user calls, errors, ete.) and the details of the formats of TCP
segments,

1.4, Interfaces

The TCP interfaces on one side to user or application processes and on
the other side to a lower level protoecol such as Internet Protocol,

The interface between an application process and the TCP is
illustrated in reasonable detail, This interface consists of a set of
calls much like the ealls an operating system provides to an
application process for manipulating files, For example, there are
calls to open and close connections and to send and receive letters on
established connections. It is also expected that the TCP can
asynchronously communicate with application programs. Although
considerable freedom is permitted to TCP implementors to design
interfaces which are appropriate to a particular operating system
environment, this TCP specifieation requires a certain minimum
funetionality to be achieved at the ICP/user interface for any wvalid
implementation.

The interface between TGP and lower lavel protosol is essentially
unspecified except that it is assume there is a mechanism whereby the
two can asynchronously pass information to each other. Typically, one
expects the lower level protocol to specify this interface, TCP is
designed to work in a Very general environment of interconnected
networks. Therefore, the lower level protocol which is assumed
throughout this document is the Internet Protocol,

1.5. Operation

As noted above, the primary purpose of the TCP is to provide reliable,
securable logical ecircuit or connection service between pairs of
processes. To provide this service on top of a less reliable internet
communication system requires facilities in the following areas:

Basic Data Transfer
Reliability

Flow Control
Multiplexing
Connections

Precedence and Security

The baszic operaticn of the TCP in each of these areas is deseribed in
the following paragraphs.

[Page 3]

December 1979
Transmission Centrol Protocol
Introduction

Basic Data Transfer:

The TCP is able to transfer a continuous stream of octets in each
direction between its users by packaging some number of octets into
segments for transmission through the internet system., 1In this
Stream mode, the TCPs decide when to block and forward data at their
oWn convenience,

For users who desire a record-oriented service, the TCP alsc permits
the user to submit records, called letters, for transmission. When
the sending user indicates a record boundary Eend—uf—letter}. this
causes the TCPs to promptly forward and deliver datsa up to that
point to the receiver,

Reliability:

The TCP must recover from data that is damaged, lost, duplicated, or
delivered out of order by the internet communication system. This
is achieved by assigning a sequence number to each oectet
transmitted, and requiring a positive acknowledgment (ACK) from the
receiving TCP. If the ACK is not received within a timeout
interval, the data is retransmitted. At the receiver, the seguence
numbers are used to correctly order segments that may be received
out of order and to eliminate duplicates, Damage is handled by
adding a checksum to each Segment transmitted, checking it at the
receiver, and disearding damaged Segments.,

As long as the TCPs continue to function properly and the internet
System does not become completely partitioned, no transmission
errors will affect the users. All errors in the internet
communication system are recovered by the TCP.

Flow Control:

TCP provides a means for the receiver to govern the amount of data
sent by the sender. This is achieved by returning a "window" with
every ACK indicating a range of acceptable sequence numbers beyond
the last segment successfully received., For stream mode, the window
indicates an allowed number of octets that the sender may transmit
before receiving further permission. It is also possible for the
ICP to operate in a mode where buffer sizes and letter boundaries
are incorporated in flow control,

Multiplexing:
To allow for many processes within a single Host to use TCP

communication facilities simultaneously, the TCP provides a set of
addresses or ports within each host. Concatenated with the network

[Page 4]

December 1979
Transmission Control Protoeol
Introduction

and host addresses from the internet communication layer, this forms
a socket. A pair of sockets uniquely identifies each connection.
That is, different connections may have a common socket on one side,
but the sockets on the other sides must be different,

The binding of ports to processes is handled independently by each
Host. However, it proves useful to attach frequently used processes
(e.g., a "logger" or timesharing service) to fixed sockets which are
made known to the public. These services can then be sccessed
through the known addresses,. Establishing and learning the port
addresses of other processes may involve more dynamic mechanisms,

Connections:

The reliability and flow control mechanisms described above require
that TCPs initialize and maintain certain status information for
each data stream. The combination of this information, ineluding
sockets, sequence numbers, and window sizes, is called a connection.
Each connection is uniquely specified by a pair of sockets
identifying its two sides.

When two processes wish to communicate, their TCP's must first
establish a connection (initialize the status informaticn on each
side). When their communication is complete, the connection is
terminated or clesed to free the rescurces for other uses,

Sinee eonnections must be established over the unreliable internet
communication system, a handshake mechanism with clock=based
sequence numbers is used to avoid erroneous initialization of
connections,

Precedence and Security:
The users of TCP may indicate the security and precedence of their

communication., Provision is made for default values to be used when
these features are not needed,

[Page 5]

December 1979
Transmission Control Protocol

[Page 6]

Decembar 1979
Transmission Control Protocol

2. PHILOSOPHY
2.1. Elements of the Internetwork System

The internetwork environment consists of hosts connected to networks
which are in turn interconnected via gateways. It i= assumed here
that the networks may be either local networks (e.g., the ETHERNET) or
large networks (e.g., the ARPANET), but in any case are based on
packet switching technology. The active agents that produce and
consume messages are processes. Various levels of protocols in the
networks, the gateways, and the hosts support an interprocess
communication system that provides two-way data flow on logical
connections between process ports.

We specifically assume that data is transmitted from host to host
through means of a set of networks. When we say network, we have in
mind a packet switched network (PSN). This assumption is probably
unnecessary, since a circuit switched network or a hybrid combination
of the two could also be used: but for concreteness, we explicitly
assume that the hosts are connected to one or more packet switches of
a PSN.

The term packet is used generically here to mean the data of one
transaction between a host and a packet switeh. The format of data
blocks exchanged between the packet switehes in a network will
generally not be of concern to us,

Hosts are computers attached to a network, and from the communication
network's point of view, are the sources and destinations of packets,
Processes are viewasd as the active elements in host computers (in
accordance with the fairly common definition of 2z process as a program
in execution). Even terminals and files or other I1/0 devices are
viewed as communicating with each other through the use of processes,
Thus, all communication is viewed as inter-process communication,

Since a process may need to distinguish among several communication
streams between itself and another process (or processes), we imagine
that each process may have a number of ports through which it
communicates with the ports of other processes,

2.2. Model of Operation

Processes transmit data by calling on the TCP and passing buffers of
data as arguments. The TCP packages the data from these buffers into
sSegments and calls on the internet module to transmit each segment to
the destination TCP. The receiving TCP places the data from = segment
into the receiving users buffer and notifies the receiving user. The
TCPs include control information in the segments which they use to
ensure reliable ordered data transmission.

[Page 7]

December 1979
Transmission Control Protocol
Philosophy

The model of internet communication is that there is a basic gateway
(or internet protocol module) associated with each TCP which provides
an interface to the local network. This basic gateway packages TCP
segments inside internet datagrams and routes these datagrams to a
destination or intermediate gateway. To transmit the datagram through
the local network, it is embedded in a loecal network packet.

The packet switches may perform further packaging, fragmentation, or
other operations to achieve the delivery of the local packet to the
destination gateway.

At a gateway between networks, the internet datagram is "unwrapped"
from its local packet and examined to determine through which network
the internet datagram should travel next. The internet datagram is
then "wrapped" in a local packet suitable to the next network and
routed to the next gateway.

A gateway is permitted to break up an internet datagram into smaller
internet datagram fragments if this is necessary for transmission
through the next network. To do this, the gateway produces a set of
internet datagrams; each carrying a fragment. Fragments may be broken
into smaller ones at intermediate gateways. The internet datagram
fragment format is designed so that the destination gateway can
reassemble fragments into internet datagrams.

A destination gateway unwraps the segment from the datagram (after
reassembling the datagram, if necessary) and passes 1t to the
destination TCP.

This simple model of the operation glosses over many details. One
important feature is the type of service, This provides information
to the gateway to guide it in selecting the service parameters to be
used in traversing the next network. Included in the type of service
information is the precedence of the datagram. Datagrams may also
carry security information to permit host and gateways that operate in
multilevel secure environments to properly segregate datagrams for
security considerations.

2.3. The Host Environment

The TCP is assumed to be a module in a time sharing operating system.
The users access the TCP much like they would access the file system.
The TCP may call on other operating system functions, for example, to
manage data structures. The actual interface to the network is
assumed to be controlled by a device driver module. The TCP does not
call on the network device driver directly, but rather calls on the
internet datagram protocol module whieh may in turn call on the device
driver,

[Page 8]

December 1979
Transmission Control Protocol
Philosophy

Though it is assumed here that processes are supported bv the host
operating system, the mechanisms of TCP do not preclude implementation
of the TCP in a front-end processor. However, in such an
implementation, a host-to-front-end protocol must provide the
functionality to support the type of TCP-user interface described
above,

2.4, Interfaces

The TCP/user interface provides for calls made by the user on the TCP
to OPEN or CLOSE a connection, to SEND or RECEIVE data, or to obtain
STATUS about a connection. These calls are like other calls from user
programs on the operating system, for example, the calls to open, read
from, and close a file,

The TCP/internet interface provides calls to send and receive
datagrams addressed to TCP modules in hosts anywhere in the internet
system. These calls have parameters for passing the address type of
service, precedence, security, and other control information.

2.5. Relation to Other Protocols

The following diagram illustrates the place of the TCP in the protocol
hierarchy:

F———— s e T F—————
iTelnet| | FTP | |Voice! ... | | Application Level
+ + o+ + + -+ ————
| | i I
e ———— + Fm——— + F—_———— +
i TCP | i RTP | SEguesd i Host Level
Fm————— d————e + S — +
i i i
+ —+
| Internet Protocol | Gateway Level

Local Network Protocol

Network Level

+*+ ==+
o

Protocol Relationships

Figure 2,

[Page 9]

December 1979
Transmission Control Protocol
Philosophy

It is expected that the TCP will be able to support higher level
protocols efficiently. It should be easy to interface higher level
protocols like the ARPANET Telnet or AUTODIN II THP to the TCP,

2.6, Reliable Communication

A stream of data sent on a TCP connection is delivered reliably and in
order at the destination.

Transmission is made reliable via the use of sequence numbers and
acknowledgments. Conceptually, each cctet of data is assigned a
sequence number. The sequence number of the first ocectet of data in a
gegment is the sequence number transmitted with that segment and is
called the segment sequence number., Segments also earry an
acknowledgment number which is the sequence number of the next
expected data octet of transmissions in the reverse direction. When
the TCP transmits a segment, it puts a copy on a retransmission queue
and starts a timer: when the acknowledgment for that data is received,
the segment is deleted from the gqueue. If the acknowledgment is not
received before the timer runs out, the segment is retransmitted.

An acknowledgment by TCP does not guarantee that the data has been
delivered to the end user, but only that the TCP has taken the
responsibility to do so.

To govern the flow of data into a TCF, a flow control mechanism is
employed, The the data receiving TCF reports a window to the sending
TCP. This window is the number of octets starting with the
acknowledgment number that the data receiving TCF is currently
prepared to receive,

2.7. Connection Establishment and Clearing

To identify the separate data streams that a TCP may handle, the TCF
provides a port identifier. Since port identifiers are selected
independently by each operating system, TCP, or user, they might not
be unique. To provide for unique addresses at each TCP, we
concatenate an internet address identifying the TCP with a port
identifier to ecreate a soccket which will be unique throughout all
networks connected together.

A connection is fully specified by the pair of sockets at the ends,
since the same local socket may participate in many connections to
different foreign sockets, A connection can be used to ecarry data in
both direetions, that is, it is "full duplex".

TCPs are free to associate ports with processes however they choose,
However, several basic concepts seem necessary in any implementation.

[Page 101]

December 1979
Transmission Control Protocol
Philosophy

There must be well-known sockets which the TCP associates only with
the "appropriate" processes by some means. We envision that processes
may "own" ports, and that processes can only initiate connections on
the ports they own. (Means for implementing ownership is a loeal
issue, but we envision a Request Port user command, or a method of
uniquely allocating a group of ports to a given process, e.g., by
assoclating the high order bits of a port name with a given process,)

A connection is specified in the OPEN call by the loecal port and
foreign socket arguments. In return, the TCP supplies a (short) local
connection name by which the user refers to the connection in
subsequent calls. There are several things that must be remembered
about a connection. To store this information we imagine that there
is a data structure called a Transmission Control Block (TCB). One
implementation strategy would have the loeal connection name be a
pointer to the TCB for this connection. The OPEN call also specifies
whether the connection establishment is to be actively pursued, or to
be passively waited for.

A foreign socket of all zeros is called unspacified. The purpose
behind unspecified sockets is to provide a sort of "general delivery"
facility (ussful for processes offering servieces). This is allowed
only for passive OPENs.

A service process that wished to provide services for unknown other
processes could issue a passive OPEN request with an unspecified
foreign socket. Then a connection ecould be made with any process that
requested a connection to this local socket. It would help if this
local socket were known to be associated with this service.

Well-known sockets are a convenient mechanism for a priori associating
a sockst address with a standard service. For instance, the
"Telnet-Server" process might be permanently assigned to a particular
socket, and other sockets might be reserved for File Transfer, Remote
Job Entry, Text Generator, Echoer, and Sink processes (the last three
being for test purposes). A socket address might be reserved for
access to a "Look-Up" service which would return the specifiec socket
at which a newly created service would be provided. The concept of a
well-known socket is part of the TCP specification, but the assignment
of sockets to serviees is outside this specification,

Processes can issue passive OPENs and wait for matching calls from
other processes and be informed by the TCP when conneetions have been
established, Two processes which issue ealls to each other at the
same time are correctly connected. This flexibility is ecritieal for
the support of distributed computing in which components act
asynchronously with respect to each other.

[Page 11]

December 1979
Transmission Control Protocol
Philosophy

There are two cases for matching the sockets in the loeal reguest and
an inecoming segment. In the first case, the local reguest has fully
specified the foreign socket., In this case, the match must be exact.
In the second case, the local request has left the foreign socket
unspecified. In this case, any foreign sockst is acceptable as long
as the local sockets match,

If there are several pending passive OPENs (recorded in TCBs) with the
same local socket, an incoming segment should be matched to a reguest
With the speecific foreign socket in the segment, if such a request

exists, bafore selecting a request with an unspecified forsign socket.

Tne procedures to establish and clear connections utilize synchronize
(5YN) and finis (FIN) control flags and involve an exchange of three
messages, This exchange has been termed a three-way hand shake [3].

A connection is initiated by the rendezvous of an arriving segment
containing a SYN and a waiting TCB entry created by a user OPEN
command. The matching of local and foreign sockets determines when a
connection has been initiated. The connection becomes "established"
when sequence numbers have been synchronized in both directions.

Tne clearing of a connection also involves the exchange of segments,
in this case earrying the FIN control flag.

2.8. Data Communication

The data that flows on a connection may be thought of as a stream of
octets, or as a sequence of records. 1In TCP the records are called
letters and are of variable length. The sending user indicates in
each 3END eall whether the data in that call completes a letter by the
setting of the end-of-letter parameter.

The length of a letter may be such that it must be broken into
segments before it can be transmitted to its destination. We assume
that the segments will normally be reassembled into a letter before
being passed to the receiving process. A segment may contain all or a
part of a letter, but a segment never containg parts of more than one
letter. The end of a letter is marked by the appearance of an EOL
control flag in a segment. A sending TCP is allowsd to collect data
from the sending user and to send that data in segments at its own
convenience, until the end of letter is signaled then it must send all
unsent data. When a receiving TCP has a complete letter, it must not
Wwait for more data from the sending TCP before passing the letter to
the reeceiving process.

There is a coupling betwsen letters as sent and the use of buffers of
data that eross the TCP/user interface. Each time an end-of-lettep

[Page 12]

December 1979
Transmission Control Protocol
Philosophy

(EOL) flag is associated ing user's
buffer, the buffer is returned to the user for processing even if the
buffer is not filled. 1If a letter is longer than the user's buffer,
the letter is passed to the user in buffer 3ize units, the last of
Wwhich may be only partly full.

The TCP is responsible for regulating the flow of segments on the
conneetions, as a way of preventing itself from becoming saturated or
overloaded with traffic. This is done using a window flow control
mechanism., The data receiving TCP reports to the data sending TCP a
window which is the range of sequence numbers of data octets that data
receiving TCP is currently prepared to acecept.

TCP also provides a means to communicate to the receiver of data that
at some point further along in the data stream than the receiver is
currently reading there is urgent data. TCP does not attempt to
define what the user specifically does upon being notified of pending
urgent data, but the general notion is that the receiving process
should take action to read through the end urgent data quickly,

2.9. Precedence and Security

The TCP makes use of the internet protocol type of service field and
security option to provide precedence and Security on a per connection
basis to TCP users. Not all TCP modules will necessarily funetion in
a multilevel secure environment, some may be limited to unclassified
use only, and others may operate at only one security level and
compartment. Consequently, some TCP implementations and services to
Users may be limited to a subset of the multilevel secure case,

TCP modules which operate in a multilevel secure environment should
properly mark outgoing segments with the security, compartment, and
precedence. 3Such TCP modules should also provide to their users or
higher level protocols such as Telnet or THP an interface to allow
them to specify the desired security level, compartment, and
precedence of connections,

2.10. Robustness Principle
TCP implementations should follow a general principle of robustnsss:

be conservative in what you do, be liberal in what you accept from
others,

[Page 133

December 1979
Transmission Control Protoeol

[Paze 14]

December 1979
Transmission Control Protoesl

3. FUNCTIONAL SPECIFICATION

3.1, Header Format

TCP segments are sent asz internet datagrams., The Internet Protocol
header carries several information fields, ineluding the source and
destination host addresses [1], A TCP header follows the internet
header, supplying information specific to the TCP protocol. This

division allows for the existence of host level protocols other than
TCP.

TCP Header Format

0 1 2

3
L S P G 8 R M e 1) e 9012345678901

i e e o T g [T R T L T R +—+4+-+—+‘+—+—+4+—+—+++-+-+ﬂ+-+—+
| Source Por i Destination Port

R B e e s sl o N T L e Mo el T B = +—+—+-+—+-+-+—+—+—+—+—+
i Sequence Number i
+—+~+-+-+—+—+—+4+—+—+-+—+-+—+—+-+—+ F=tmpm ==~} L it s gl TR TR
i Acknowledgment Number |
+-+~+-+-+-+-+-+-+-+-+-+—+-+-+—+4+-+-+-+-+-+-+-+-+—+-+-+-+-+-+-+—+
{ Data } iUTAIEIRISIF} i
i Offset] Reserved |R!C!O!S!Y!T! Window I
i i IGIKILITININ]]
+-+—+—+-+—+-+—+—+-+—+—+‘+—+—+4+—+—+—+—+—+—+—+—+_+—+—+—+-+—+-+-+—+
i Chantranp i Urgent Pointer

R bl S s T T S S W L e e S e s ar, e N T t=t=t=t === St et T
| Options H Padding i
i e e e e e o T R S s s ST S +=+ b=t
| data i
=+ == 3 +—+—+-+—+—+-+—+4+-+—+i+-+—+-+-+—+-+-+—+-+-+—+

TCP Header Format
Note that one tiek mark represents one bit position.

Figure 3.

Source Port: 16 bits
The source port number.
Destination Port: 15 bits

The destination port number,

[Page 15]

December 1379
Transmission Control Protocol
Funetional Specifieation

Sequence Number: 32 bits
The sequence number of the first data octet in this segment.
Acknowledgment Number: 32 bits

If the ACK control bit is set this field contains the value of the
next sequence number the sender of the segment is expecting to
receive,

Data Offset: U4 bits

The number of 32 bit words in the TCP Header. This indicates where
the data begins, The TCP header including options is an integral
number of 32 bits long.

Resarvad: 6 bits
Reserved for future use, Must be zero.
Control Bitz: & bits {(from left to right):

URG:; Urgent Pointer field signifiecant
ACK: Acknowledgment field significant
EOL: End of Letter

R3T: FReset the connsction

SYN: Synchronize sequence numbers
FIN: No more data from sender

Window: 16 bits

The number of data octets beginning with the one indicated in the
acknowledgment field which the sender of this segment is willing to
accept.

Checksum: 16 bits

The checksum field is the 16 bit one's complement of the one's
complement sum of all 16 bit words in the header and text, If a
segment contains an odd number of header and text octets to be
checksummed, the last octet is padded on the right with zeros to
form a 16 bit word for checksum purposes. The pad is not
transmitted as part of the segment. While computing the checksum,
the checksum field itself is replaced with zeros.

The checksum also covers a 96 bit pseudo header conceptually

prefixed to the TCP header. This pseudo header contains the Source
Address, the Destination Address, the Protocol, and TCP length,

[Page 16]

December 1979

Transmission Control Protocol
Functional Specification

This gives the TCP protection against misrouted segments. This
information is carried in the Internet Protocol and is transferred
across the TCP/Network interface in the arguments or results of
calls by the TCP on the IP.

+

Source Address

Destination Address

| PTCL | TCP Length

]
1]
3
o

1
1
4
1
I
'
]
1
+

S T

The TCP Length is the TCP header plus the data lengzth in octets
(this is not a explieitly transmitted quantity, but is computed
from the total length, and the header length).

Urgent Pointer: 16 bits

This field communicates the current value of the urgent pointer as a
positive offset from the Sequence number in this segment. The
urgent pointer points to the sequence number of the octet following
the urgent data. This field should only be interpreted in segments
with the URG eontrol bit set.

Options: wvariable
Options may oceupy space at the end of the TCP header and are a
multiple of 8 bits in length. All options are included in the
checksum. An option may begin on any octet boundary. There are tuo
cases for the format of an option:

Case 1: A single octet of option-kind,

Case 2! An octet of option-kind, an cctet of option=length, and
the actual option-data octets.

The option-length counts the two octets of option=kind and
option-length as well as the option-data octets.

Note that the list of options may be shorter than the data offset
field might imply. The content of the header beyond the
End-of-Option option should be header padding (i.e., zero).

A TCP must implement all options.

[Page 17]

Transmis
Funetion

December 1979
sion Control Protocol
al Specifiecation

Currently defined options include (kind indicated in octal):

Ki

0
1
10
10

Spec

En

Mo

Bu

[Page 18

nd Length Meaning
- End of option list.
- No-Operation.

0 - Reserved.

5 Y Buffer 3ize,

ific Option Definitions

d of Option List

Fmm +

100000000}

e +

Kind=0

This option code indicates the end of the option list. This
might not coincide with the end of the TCP header according to
the Data Offset field. This is used at the end of all options,
not the end of each option, and need only be used if the end of
the options would not otherwise coincide with the end of the TCP
header.

=Jperation

Fm—————

100000001}

This option code may be used between options, for example, to
align the beginning of a subsequent option on a word boundary.
There is no guarantee that senders will use this option, so
receivers must be prepared to process options even if they do
not begin on a word boundary.

ffar Size

: 4 + g -———
101000101}00000100!} buffer size I
o + + +
Kind=105 Length=4

b
- T

]

December 1

979

Transmission Control Protocol
Functional Speeifination

Buffer Size Option Data: 16 bits

Padding:

If this option is present, then it communicates the receive
buffer size at the TCP which sends this segment., This field
should only be sent in segments with the SY¥N control bit set.
If this option is not used, the default buffer size of one
octet is assumed,

variable

The TCP header padding is used to ensure that the TCP header ends
and data begins on a 32 bit boundary. The padding is composed of

Zeros.

3.2. Terminology

Before we can discuss very much about the operation of the TCP we need
to introduce some detailed terminology. The maintenance of a TCP
connection requires the remembering of several variables, We conceive
of these variables being stored in a connection record called a
Transmission Control Block or TCB. Among the variables stored in the

TCB are

the local and

remote socket numbers, the security and

precedence of the connection, pointers to the user's send and receive
buffers, pointers to the retransmit queue and to the current segment.
In addition several variables relating to the send and receive
Sequence numbers are stored in the TCB.

Send Sequence Variables

SND.
SND.
SND.
SHD.
SHD.
SND.
SND.
I55

UNA - send unacknowledged
NXT - send sequence
WND - send window

BS - send buffer size
UP - send urgent pointer
WL - send sequence number used for last window update
LBB - send last buffer beginning
= initial send sequence number

Receive Sequence Variables

RCV.NXT = receive
RCV.WHD = receive
RCV.B5S - receive
RCV.UP = receive
RCV.LBB = receive
IRS - initial

seguence
window

buffer size

urgent pointer

last buffer beginning
receive sequence number

[Pag= 19]

December 1979
Transmission Control Protocol

Functional Specification

The following diagrams may help to relate some of these variables to
the sequence space.

Send Sequence Space

1 2 3 y
—| —| |

1
SND.UNA SND. NXT SND.UNA
+3ND,WND

o0ld sequence numbers which have been acknowledged
sequence numbers of unacknowledged data

sequence numbers allowed for new data transmission
future sequence numbers which are not yet allowed

Swn -
1

Send Sequence Space

Figure 4,

Receive Seguence Space

1 2 3

RCV.NXT RCV,NXT
+RCV, WND

1 = old sequence numbers which have been acknowledged

2 - sequence numbers allowed for new reception

3 - future sequence numbers which are not yet allowed
Receive Sequence Space

Figure 5.

There are also some variables used frequently in the discussion that
take their values from the fields of the current segment.

[Page 20]

December 1979
Transmission Control Protocol
Functional Specification

Current Segment Variables

SEG.3EQ - segment sequence number
SEG.ACK - segment acknowledgment number
SEG.LEN - segment length

SEG.WND - segment window
SEG.UP - segment urgent pointer
SEG.PRC - segment precedence value

A connection progresses through a series of states during its
lifetime. The states are: LISTEN, SYN-SENT, SYN-RECEIVED,
ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, TIME-WAIT, CLOSE-WAIT, CLOSING,
and the fietional state CLOSED. Closed is fictional beecausa it
represents the state when there is no TCB, and therefore, no
connection. Briefly the meanings of the states are:

LISTEN - represents waiting for a connection request from any remote
TCP and port.

SIN-3ENT - represents waiting for a matching connection request
after having sent a connection request.

SYN-RECEIVED - represents waiting for a confirming connection
request acknowledgment after having both sent and received a
connection request.

ESTABLISHED - represents an open connection, ready to transmit and
receive data segments,

FIN-WAIT-1 - represents waiting for a connection termination request
from the remote TCP, or an acknowledgment of the connection
termination request previously sent.

FIN=-WAIT-2 - represents waiting for a conneection termination regquest
from the remote TCP.

TIME-WAIT - represents waiting for enough time to pass to be sure
the remote TCP received the acknowledgment of its connection
termination reguast.

CLOSE-WAIT - represents waiting for a connection termination request
from the local user.

CLOSING - represents waiting for a connection termination request
acknowledgment from the remote TCP.

CLOSED - represents no connection state at all.

[Page 21]

December 1979

Transmission Control Protocol
Functional Specification

A TCP connection progresses from one state to another in response to
events. The events are the user calls, OPEN, SEND, RECEIVE, CLOSE,
ABORT, and STATUS; the incoming segments, particularly those
containing the SYN and FIN flags: and timeouts.

The Glossary contains a more complete list of terms and their
definitions,.

The state diagram in figure 6 only illustrates state changes, together
with the causing events and resulting actions, but addresses neither
error conditions nor actions which are not connected with state
changes. In a later section, more detail is offered with respect to
the reaction of the TCP to events,

[Page 22]

December 1979
Transmission Control Protocol
Functional Specification

+ + 5 active OPEN
i CLOSED ! R e e e
+ +4 \ '\ create TCB
i ¥ N N snd 3YN
passive OPEN | H CLOSE \ \
———————————— | i —_— ARy
create TCE | | delete TCRB i Y,
v | 5\ A
———— e + CLOSE | Y
IRSIET S TEN | e s - | i
+ delete TCB |
rev SYN | | SEND | H
—————————— H | ————— ! v
e + snd SYIN,ACK / b snd SYHN Fmm———— ey
| i< - —>| i
| SYN i rev SYN | SYN i
| RCVD |¢ - | SENT |
| i snd ACK | i
1 1] 1
1] — I]
F———==————+ rov ACK of SYN \ /' rev SYN,ACK o
I I [}
I I e e e e
i X i i snd ACK
i v v
i CLOSE Fr———————
L — i ESTAB |
i =2nd FIN Fmm—————y
| CLOSE i i rey FIN
LSS Pl S SRR i | ———
S + snd FIN / \ snd ACK e — +
i FIN 1< > CLOSE |
i WAIT-1 |— i WAIT |
e - rev FIN A £ CLOSE e ——————— +
i rev ACK of FIN @&———ae e e e
i snd ACK | i snd FIN
v % v '}
Fmm—————— + Fm———— -4
I FINWAIT-2| | CLOSING |
Fmm————— tm———————— +
| rev FIN | rev ACK of FIN
| ————— Timeout=2M3L i
V snd ACK ———————— v delete TCB
Fm————— -+ delete TCB 4———mmeeeyt
I TIME WAIT) >| CLOSED |
S + e e

TCP Connection State Diagram
Figure 6,

[Page 23]

December 1979
Transmission Control Protocol
Functional Speecification

3.3. Sequence Numbers

A fundamental notion in the design is that every octet of data sent
over a TCP connection has a sequence number. Since every octet is
sequenced, each of them can be acknowledged. The acknowledgment
mechanism employed is cumulative so that an acknowledgment of sequence
number X indicates that all oectets up to but not including X have been
received. This mechanism allows for straight-forward duplicate
detection in the presence of retransmission,

It is essential to remember that the actual sequence number space is
finite, though very large. This space ranges from 0 to 24%32 - 1,
Since the space is finite, all arithmetic dealing with sequence
numbers must be performed moduloc 2%%32, This unsigned arithmetic
preserves the relationship of sequence numbers as they cyele from
2%%32 - 1 to 0 again. There are some subtleties to computer modulo
arithmetic, so great care should be taken in programming the
comparison of such values. The typical kinds of sequence number
comparisons which the TCP must perform inelude:

(a) Determining that an acknowledgment refers to some sequence
number sent but not yet acknowledged.

(b) Determining that all sequence numbers occupied by a segment
have been acknowledged (e.g., to remove the segment from a
retransmission queue).

(e) Determining that an incoming segment contains sequence numbers
wnich are expected (i.e., that the segment "overlaps" the
receive window).

On send connections the following comparisons are needed:

older sequence numbers newer ssguence numbers

SND.UNA SEG. ACK SND.NXT

I]]

I] 1
== | ———=XXXXAAX 8808604 6.0 CTNE. i 4.8 8.4 SEEE PR

i | i | i i

| | |
Segment 1 3egment 2 Segment 3
{===—— 3eguence Spane ———->

Sending Sequence Space Information

Figure 7.

[Page 24]

December 14979
Transmisaion Control Protocol
Functional Specification

SND.UNA = oldest unacknowledged sequence number

SND.NXT = next sequence number to be sent

SEG.ACK = acknowledgment (next sequence number expected by the
acknowledging TCP)

SEG.SEQ = first sequence number of a Segment

SEG.SEQ+3EG.LEN-1 = last sequence number of a segment

An acceptable acknowledgment, SEG.ACK, is one for which the inequality
below holds:

0 < (SEG.ACK - SND.UNA) =< (SND.NXT - SND.UNA)
or.
SND,UNA < SEG.ACK =< SND.NXT

Note that all arithmetic is modulo 2%*%32 and that comparisons are
unsigned. "=<" means "less than or egqual",

Similarly, the determination that a particular segment has been fully
acknowledged can be made if the inequality below holds:

0 < (SEG.SEQ+SEG.LEN-1 - SND.UNA) < (SEG.ACK - SND, UNA)

SEG.LEN is the number of octets occupied by the data in the segment.
It is important to note that SEG.LEN must be non-zero; segments which
do not occupy any sequence space (e.g., empty acknowledgment Segments)
are never placed on the retransmission queue, so would not go through
this particular test.

[Page 25]

December 1979
Transmission Control Protocol
Functional Specification

On receive connections the following comparisons are needed:

older sequence numbers newer sequence numbers
RCV.NXT RCV.NXT+RCV.WND
] 1
L] 1
-------- e SO G D S CEEEEEY . §.0.0.6.0.0. 0 CESEINEEEES § ¢ §) 6, SE———
P i i
i i i
Segment 1 Segment 2 Segment 3
{===== zaquence space ———-—->

Receiving Sequence Space Information
Figure 8.
RCV.NXT = next sequence number expected on incoming segments

RCV.NXT+RCV.WND = last sequence number expected on incoming
segments, plus one

SEG.3EQ = first sequence number occupied by the incoming segment

SEG.3EQ+3EG.LEN-1 = last sequence number cccupied by the incoming
Segment

A segment is judged to occupy a portion of valid receive sequence
space if

0 =< (SEG.SEQ+3EG,LEN-1 - RCV.NXT) < (RCV.NXT+RCV.WND - RCV.NXT)
SEG.3EQ+3EG.LEN-1 is the last sequence number ocecupied by the segment:
RCV.NXT is the next sequence number expected on an incoming segment;
and RCV.NXT+RCV.WND is the right edge of the receive window.

Actually, it is a little more complieated than this. Due to zero

windows and zero length segments, we have four cases for the
acceptability of an incoming segment;

[Page 26]

December 1979
Transmission Control Protocol
Funetional Specification

Segment Receive Test
Length Window

0 0 SEG.3EQ = RCV.MNXT

0 >0 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

>0 1] not acceptable
>0 >0 RCV.NXT < SEG.SEQ+SEG.LEN =< RCV.NXT+RCV,WND

Note that the acceptance test for a sSegment, sinece it requires the end
of a segment to lie in the window, is somewhat more restrictive than
is absolutely necessary. If at least the first sequence number of the
segment lies in the receive window, or if some part of the segment
lies in the receive window, then the segment might be judged
acceptable. Thus, in figure 8, at least segments 1 and 2 are
acceptable by the strict rule, and segment 3 may or may not be,
depending on the strictness of interpretation of the rule.

Note that when the receive window is Zero no segments should be
acceptable except ACK segments. Thus, it should be possible for a TCP
to maintain a zero receive window while transmitting data and
receiving ACKs.

We have taken advantage of the numbering scheme to protect certain
control information as well., This is achieved by implieitly ineluding
some control flags in the sequence space so they can be retransmitted
and acknowledged without confusion (i.e., one and only one copy of the
control will be acted upon). Control information is not physically
carried in the segment data space. Consequently, we must adopt rules
for implicitly assigning sequence numbers to control. The SYN and FIN
are the only controls requiring this protection, and these controls
are used only at connection opening and closing. For sequence number
purposes, the SYN is considered to occur before the first actual data
octet of the segment in which it oceurs, while the FIN is considered
to oceur after the last actual data octet in a segment in whieh it
occurs. The segment length includes both data and sequence space
oeeupying eontrols,

Initial Sequence Number Selection

The protocol places no restriction on a particular connection being
used over and over again. A connection is defined by a pair of
sockets. New instances of a connection will be referred to as
incarnations of the connection. The problem that arises owing to this
is — "how does the TCP identify duplicate segments from previous

[Page 27]

December 1979
Transmission Control Protocol
Functional Specification

incarnations of the connection?" This problem becomes apparent if the
connection is being opened and closed in quick succession, or if the
connection breaks with loss of memory and is then reestablished.

To avoid confusion we must prevent segments from being emitted with
sequence numbers which duplicate those which are still in the network.
We want to assure this, even if a TCP crashes and loses all knowledge
of the sequence numbers it has been using. When new connections are
created, an initial sequence number (ISN) generator is employed which
selects a new 32 bit ISN. The generator is bound to a (possibly
fictitious) 32 bit eclock whose low order bit is incremented roughly
every 4 microseconds. Thus, the ISN eycles approximately every 4.55
hours. Since we assume that segments will stay in the network no more
than tens of seconds or minutes, at worst, we can reasonably assume
that ISN's will be unique.

For each connection there is a send sequence number and a receive
sequence number., The initial send sequence number (ISS) is chosen by
the data sending TCP, and the initial receive sequence number (IRS) is
learned during the connection establishing procedure.

For a connection to be established or initialized, the two TCPs must
synchronize on each other's initial sequence numbers. This is done in
an exchange of connection establishing messages carrying a control bit
called "SYN" (for synchronize) and the initial sequence numbers. As a
shorthand, messages carrying the SYN bit are also called "SYNs".
Henee, the sclution requires a suitable mechanism for picking an
initial sequence number and a slightly involved handshake to exchange
the ISN's, A "three way handshake" is necessary because sequence
numbers are not tied to a global clock in the network, and TCPs may
have different mechanisms for picking the ISN's. The receiver of the
first SYN has no way of knowing whether the segment was an old delayed
one or not, unless it remembers the last sequence number used on the
connection (which is not always possible), and so it must ask the
sender to verify this 3YN.

The "three way handshake" and the advantages of a "elock-driven"
scheme are discussed in [31].

Enowing When to Keep Quiet

To be sure that a TCP does not ereate a segment that carries a
sequence number which may be duplicated by an old segment remaining in
the network, the TCP must keep quiet for a maximum segment lifetime
(MSL) before assigning any sequence numbers upon starting up or
recovering from a crash in which memory of sequence numbers in use was
lost, For this specification the MSL is taken to be 2 minutes. This
is an engineering choice, and may be changed if experience indicates

[Page 28]

December 1979
Transmission Control Protocol
Functional Specification

it is desirable to do so. MNote that if a TCP is reinitialized in some
sense, yet retains its memory of 3equence numbers in use, then it need
not wait at all; it must only be sure to use seguence numbers larger
than those recently used,

It should be noted that this strategy does not protect against
spoofing or other replay type duplicate message problems,

3.4. Establishing a connection

The "three-way handshake" is essentially a unidirectional attempt to
establish a connection, i.e., there is an initiator and a responder,
The TCP can also establish a connection when a simultaneocus initiation
occurs. A simultaneous attempt occurs when one TCP receives a "SYN®
segment whieh ecarries no acknowledgment after it has sent a "SYN", Of
course, the arrival of an old duplicate "SYN" segment can potentially
make it appear, to the recipient, that a simultaneous connection
initiation is in progress. Proper usze of "reset" segments can
disambiguate these cases. Several examples of connection initiation
are offered below. Although these examples do not show connection
synchronization using data-carrying segments, this is perfectly
legitimate, so long as the receiving TCP doesn't deliver the data to
the user until it is elear the data is valid (i.e., the data must be
buffered at the receiver until the connection reaches the ESTABLISHED
state). The three-way handshake reduces the possibility of false
connections. It is the implementation of a trade-off between memory
and messages to provide information for this checking.

The simplest three-way handshake is shown in figure 9 below. The
figures should be interpreted in the following way. Each line is
numbered for reference purposes, Right arrows (-=») indicate
departure of a TCP segment from TCP A to TCP B, or arrival of a
Segment at B from A. Left arrows (<--), indicate the reverse,
Ellipsis (...) indieates a segment which is 5till in the network
(delayed). An "XXX" indicates a segment which is lost or rejected.
Comments appear in parentheses, TCP states represent the state AFTER
the departure or arrival of the segment (whose contents are shown in
the center of each line). Segment contents are shown in abbreviated
form, with sequence number, control flags, and ACK field. Other
fields such as window, addresses, lengths, and text have been left out
in the interest of clarity,

[Page 29]

December 19793
Transmission Control Protoeol

Functional Specification

TCP A TCF B
1. CLOSED LISTEN
2. S3YN-3ENT ==> <3EQ=100><CTL=3TN> ——> SYN-RECEIVED

3. ESTABLISHED <== <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED
4. ESTABLISHED =-> <SEQ=101><ACK=301><CTL=ACK> ——> ESTABLISHED
5. ESTABLISHED =--> <3SEQ=101><ACK=301><CTL=ACK><DATA> —--> ESTABLISHED
Basic 3-Way Handshake for Connection Synchronization
Figure 9.

In line 2 of figure 9, TCP A begins by sending a SYN segment
indicating that it will use sequence numbers starting with seguence
number 100. 1In line 3, TCP B sends a SYN and acknowledges the SYN it
received from TCP A. Note that the acknowledgment field indicates TCP
B is now expecting to hear sequence 101, acknowledging the SYN which
occupled sequence 100,

At line 4, TCP A responds with an empty segment containing an ACK for
TCP B's SYN; and in line 5, TCP A sends some data. MNote that the
Sequence number of the segment in line 5 is the same as in line 4
because the ACK does not occupy sequence number space (if it did, we
would wind up ACKing ACK's!).

Simultaneous initiation is only slightly more complex, as is shown in
figure 10, Each TCP ecycles from CLOSED to SYN-SENT to SYN-RECEIVED to
ESTABLISHED,

The prineciple reason for the three-way handshake is to prevent old
duplicate connection initiations from causing confusion. To deal wWith
this, a special control message, reset, has been devised, A TCP which
receives a reset message first verifies that the ACK field of the
reset. acknowledges something the TCP sent (otherwise, the message 1s
ignored). If the receiving TCP is in a non-synchronized state {i.e.,
SYN-SENT, SYN-RECEIVED), it returns to LISTEN on receiving an
acceptable reset, If the TCP is in one of the synchronized states
(ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, TIME-WAIT, CLOSE-WAIT, CLOSING),
it aborts the connection and informs its user. We discuss this latter
case under "half-open" connections